Method of displaying manufacturer/model code and...

Coded data generation or conversion – Code generator or transmitter – Transmitter for remote control signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S162000, C340S870030, C340S870030, C341S173000

Reexamination Certificate

active

06344817

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to a programmable, universal remote control, and more particularly to a programmable, universal remote control in which manufacturer and model numbers of electronic devices to be controlled are stored in the remote control.
Originally, standard remote controls were provided for use with a specific electronic apparatus to be controlled. Typically the standard remote control uses infrared signals to control the operation of electronic devices such as televisions, audio equipment, videocassette recorders, and the like. The appropriate infrared signal is associated with a particular button or sequence of buttons on a keypad of the remote control. By depressing the button or buttons on the remote control, the user causes the remote control to transmit the corresponding infrared signal. The electronic device receives the infrared signal, processes its content, and performs a function associated with the infrared signal.
However, remote controls of this type have many drawbacks. First, since each electronic device requires its own remote control, the user must keep track of a multitude of remote controls, which can become very cumbersome. In addition, the user must recall which remote control operates which electronic device or be forced to try multiple remote controls until the correct one is found.
In addition, as the user replaces old electronic apparatus with newer, more up to-date models, the remote control provided with the old equipment can no longer be used to control the new equipment. For instance, if the user owns a particular television with having a dedicated remote control, upon the purchase of a new television, the old remote control would be useless since it would likely not be able to control the new television. Further, the new television would require yet another remote control, which would not reduce the total number of remote controls required by the user. Therefore, a single, universal remote control that can control many different devices and that can be programmed to control additional and/or new electronic devices is desirable.
Programmable, universal remote controls have been developed that solve these deficiencies. These remote controls may be programmed with codes associated with a particular manufacturer and model number of the electronic apparatus to be controlled. In addition, each of the different codes is stored within the same remote control, which enables the user to control multiple electronic devices with one remote control.
Universal remote controls originally required the user to “teach”, or the remote control to “learn”, the proper codes to transmit in response to depressing a particular button on the remote control. A learning mode was initiated by selecting a predetermined sequence of buttons. A button on the universal remote control was then depressed, and a button on the standard remote control originally provided to control the electronic apparatus was depressed. The signal transmitted by the standard remote control was received by the universal remote control, associated with the button depressed on the universal remote control, and stored for subsequent use by the universal remote control. Thus, the universal remote control learned the appropriate signal to transmit in response to depressing a particular button. In this manner, each of the buttons on the standard remote control could be implemented by the universal remote control.
Universal remote controls often allocate different sections of the keypad for use in controlling different devices. Alternatively, a device selection button may be provided, which enables the user to selectively control multiple types of electronic devices, such as a televisions, videocassette recorders, and stereo receivers. The learning mode described above is used to program the appropriate commands required to control each of the desired electronic devices.
While universal remote controls have been satisfactory, they suffer from many shortcomings. For instance, they require that the user teach the universal remote control each of the codes necessary to control each of the electronic devices. Since any particular electronic apparatus may require several codes, and the user may own many electronic devices, programming the universal remote control becomes a burden. In addition, these codes are typically stored in random access memory (RAM), which requires that power be maintained to retain its contents. Thus, when the batteries are changed, or their power has been consumed, the contents of RAM are lost, and the user must reprogram the universal remote control.
In order to solve some of these deficiencies, programmable, universal remote controls have been developed with electrically erasable, programmable, read-only memory (EEPROM), which maintains its contents without power. Thus, when the codes are learned by the universal remote control, they are maintained in EEPROM indefinitely. However, in order to retain all of the programming codes required to control a multitude of electronic devices, it becomes necessary to provide a relatively large amount of EEPROM. Since EEPROM is expensive and relatively slow, this greatly increases the cost of the remote control and likely decreases its speed of operation.
As a further improvement programmable, universal remote controls now use a manufacturer/model code, which provides an index to one of a plurality of complete sets of programming codes necessary to control a particular manufacturer and model number of remote controlled device. The user finds the specific manufacturer and model number of his device in a cross-reference table stored in inexpensive, programmable, read-only memory (PROM). The user then programs this manufacturer/model code into the universal remote control, which will thereafter transmit the correct set of programming codes required to control his electronic device. In this way, programming codes for a wide variety of manufacturers and model numbers can be stored within the universal remote control in a relatively inexpensive manner.
For example, the universal remote control could contain a first set of program codes for operating a particular television, a second set of program codes for operating a particular videocassette recorder (VCR), a third set of program codes for operating a second type of television, a fourth set of program codes for operating a second type of VCR, and so forth. Thus, for the user to invoke a certain set of codes to control a particular device, the user only needs to teach the universal remote control the manufacturer/model code corresponding to the electronic device the user wishes to control, and not the complete set of program codes required to control the electronic device.
There are a number of situations in which the user is required to determine the manufacturer/model code that has been programmed into the remote control. Since the majority of universal remote controls do not have a display, some have overcome this problem by using a blinking, light emitting diode (LED). For multi-digit manufacturer/model codes, the LEI) blinks a specific number of times corresponding to the first digit, then pauses, and blinks a specific number of times corresponding to the second number, then pauses, and so forth. Such a display mechanism can be burdensome for the user who must count the number of blinks and record the count for each digit.
SUMMARY OF THE INVENTION
In accordance with the present invention, a method of programming a remote control is provided which includes the steps of initializing a remote controlled device in a first state (such as on) and initiating a program mode in the remote control. A first program code is transmitted by the remote control, and the program mode is terminated if the remote controlled device changes to a second state, such as off, in response to receiving the first program code. Thereafter, a first set of program codes is accessed using a first device code. However, if the remote controlled device remains in the first state in res

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of displaying manufacturer/model code and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of displaying manufacturer/model code and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of displaying manufacturer/model code and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2941880

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.