Food or edible material: processes – compositions – and products – Normally noningestible chewable material or process of...
Reexamination Certificate
1999-05-26
2002-10-29
Corbin, Arthur L. (Department: 1761)
Food or edible material: processes, compositions, and products
Normally noningestible chewable material or process of...
C424S048000, C424S440000, C426S005000
Reexamination Certificate
active
06472000
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to methods for producing chewing gum. More particularly the invention relates to producing chewing gum containing an amount of bitterness inhibitor. The bitterness inhibitor that is added to the chewing gum is treated to control its rate of release in the chewing gum.
In recent years, efforts have been devoted to controlling release characteristics of various ingredients in chewing gum. Most notably, attempts have been made to delay the release of sweeteners and flavors in various chewing gum formulations to thereby lengthen the satisfactory chewing time of the gum. Delaying the release of sweeteners and flavors can also avoid an undesirable overpowering burst of sweetness or flavor during the initial chewing period. On the other hand, some ingredients have been treated so as to increase their rate of release in chewing gum.
Besides sweeteners, other ingredients may require a controlled release from chewing gum. Bitterness inhibitors may be added to gum; however, bitterness inhibitors may vary in their release rate. Some that are not water soluble may be encapsulated in a water soluble matrix such that, during the chewing period, they may be released quickly. This would allow chewing gum to be a carrier for bitter stimulants or medicaments, with the fast release of inhibitors improving the overall quality of the gum.
On the other hand, serious taste problems may arise because of the bitter nature of bitter stimulants and/or medicaments, and a slow release may be desired. Some water soluble bitterness inhibitors may release quickly and not be effective unless their release is modified to a prolonged or delayed release. Thus these inhibitors could be used with slow release stimulants and medicaments to give chewing gum a quality taste. To be most effective, bitterness inhibitors should release from chewing gum at the same time as the bitter causing agent.
Thus there are specific advantages to adding bitterness inhibitor to chewing gum by a controlled release mechanism.
Early high intensity sweeteners had a bitter aftertaste that was modified by using glucono delta lactone, sodium gluconate and/or potassium gluconate, as disclosed in U.S. Pat. Nos. 3,647,483 and 3,684,529. Calcium chloride also reduced the bitterness of saccharin as disclosed in U.S. Pat. No. 3,773,526.
Often bitter medicaments are added to chewing gum and high intensity sweeteners are added to reduce the impression of bitterness, as disclosed in U.S. Pat. No. 4,822,597. A method of reducing bitterness of caffeine in gum is disclosed in Japanese Patent Publication No. 91-251533.
A bitterness inhibitor called neodiosmin is used to reduce bitterness in citrus juices as disclosed in U.S. Pat. No. 4,031,265 and in other foods and artificial sweeteners as disclosed in U.S. Pat. No. 4,154,862.
Other bitterness inhibitors include cyclotetradecenones, disclosed in U.S. Pat. No. 4,183,965; sclareolide, disclosed in U.S. Pat. No. 4,988,532; natural soy flavor, disclosed in U.S. Pat. No. 4,832,962; N-sulfomethyl-N-arylureas disclosed in U.S. Pat. No. 4,994,490; sodium, potassium and ammonium salts of ferulic acid and caffeic acid, disclosed in U.S. Pat. No. 5,336,513; and numerous compounds, including 2,4-dihydroxy benzoic acid, disclosed in U.S. Pat. No. 5,232,735.
Other patents disclose that menthol bitterness may be reduced by using artificial cooling agents such as those found in U.S. Pat. No. 5,009,893. Mint flavor may be modified as in U.S. Pat. No. 5,372,824 by removing a part of the 1-menthol, or as in U.S. Pat. No. 5,523,105 by adding polygodial plant extracts. Late chew bitterness in high mint-flavor content gums may be reduced by adding a granulated cellulose/Zein mixture, as disclosed in U.S. Pat. No. 5,192,563.
U.S. Pat. No. 5,139,794 discloses encapsulated sodium chloride to enhance flavor and sweetness in chewing gum. U.S. Pat. No. 5,154,939 also discloses the use in chewing gum of sodium chloride in an encapsulation matrix.
SUMMARY OF THE INVENTION
The present invention is a method of producing chewing gum with bitterness inhibitors which have been physically modified to control their release. The present invention also relates to the chewing gum so produced. These inhibitors may be added to sucrose type gum formulations, replacing a small quantity of sucrose. The formulation may be a low or high moisture formulation containing low or high amounts of moisture containing syrup. These inhibitors may also be used in low or non-sugar gum formulations, replacing a small quantity of sorbitol, mannitol, other polyols or carbohydrates. Non-sugar formulations may include low or high moisture sugar free chewing gums.
Bitterness inhibitors may be combined or co-dried with bulk sweeteners typically used in chewing gum, such as sucrose, dextrose, fructose and maltodextrins, as well as sugar alcohols such as sorbitol, mannitol, xylitol, maltitol, lactitol, hydrogenated isomaltulose and hydrogenated starch hydrolyzates.
The modified release rate noted above may be a fast release or a delayed release. The modified release of bitterness inhibitors is obtained by encapsulation, partial encapsulation or partial coating, entrapment or absorption with high or low water soluble materials or water insoluble materials. The procedures for modifying the bitterness inhibitors include spray drying, spray chilling, fluid bed coating, coacervation, extrusion and other agglomerating and standard encapsulating techniques. Bitterness inhibitors may also be absorbed onto an inert or water-insoluble material. Bitterness inhibitors may be modified in a multiple step process comprising any of the processes, or a combination of the processes noted. Prior to encapsulation, bitterness inhibitors may also be combined with bulk sweeteners including sucrose, dextrose, fructose, maltodextrin or other bulk sweeteners, as well as sugar alcohols such as sorbitol, mannitol, xylitol, maltitol, lactitol, hydrogenated isomaltulose and hydrogenated starch hydrolyzates.
Prior to encapsulation, bitterness inhibitors may be combined with high-intensity sweeteners, including but not limited to thaumatin, aspartame, alitame, acesulfame K, saccharin acid and its salts, glycyrrhizin, cyclamate and its salts, stevioside and dihydrochalcones. Co-encapsulation of bitterness inhibitors along with a high-intensity sweetener may reduce the bitterness of stimulants and/or medicaments and control the sweetener release with the inhibitor. This can improve the quality of the gum product and increase consumer acceptability.
Preferable bitterness inhibitors include ferulic acid, sodium gluconate, sodium ascorbate, sodium ferulate, sodium acetate, sodium glycinate and calcium glycerolphosphate. These bitterness inhibitors may be combined with stimulants and/or medicaments prior to encapsulation to reduce the overall bitterness caused by stimulants and/or medicaments and result in a gum product having increased consumer acceptability.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Caffeine is a natural chemical found in a variety of food products such as coffee, tea, cocoa, chocolate, and various other beverages. Caffeine is known as an effective stimulant to increase energy and reduce drowsiness. However, caffeine has a naturally bitter taste that significantly reduces the taste quality of chewing gum in which it is used.
When caffeine is added to chewing gum at a level of about 0.2% to about 5%, caffeine imparts an intense bitterness to the chewing gum that lasts throughout the chewing period. The higher the level used, the stronger the bitterness. Taste limits in chewing gum are generally about 0.4% (10 mg) to about 4% (100 mg) of caffeine in a stick of gum. The 60-80 mg level of caffeine is about the level of caffeine found in a conventional cup of coffee. The target level of caffeine in stick gum is about 40 mg per stick, with a range of about 25-60 mg, so that a five stick package of gum would contain about 200 mg of caffeine, or the equivalent of caffeine in two strong cups of coffee. However, at this level caff
Greenberg Michael J.
Gudas Victor V.
Reed Michael A.
Schnell Philip G.
Tyrpin Henry T.
Brinks Hofer Gilson & Lione
Corbin Arthur L.
Shurtz Steven P.
WM. Wrigley Jr. Co.
LandOfFree
Method of controlling release of bitterness inhibitors in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of controlling release of bitterness inhibitors in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of controlling release of bitterness inhibitors in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3000581