Butchering – Carcass subdivision – Cutting longitudinally through body or body portion
Reexamination Certificate
2000-06-26
2001-11-27
Little, Willis (Department: 3643)
Butchering
Carcass subdivision
Cutting longitudinally through body or body portion
C452S162000, C452S135000
Reexamination Certificate
active
06322437
ABSTRACT:
The invention concerns a method for obtaining the muscle flesh from beheaded fish by severing the muscle flesh from the dorsal and/or ventral spokes (processes dorsalis et ventralis) together with the fins and fin holders as well as from the ribs or lateral vertebral appendages and the vertebral column, and an apparatus for carrying out the method, including a conveyor which conveys the fish along a conveying path, severing means for severing the muscle flesh from the dorsal and/or ventral spokes and fin holders, the ribs and the vertebral column, bone guides associated with the severing means and running in the severing planes thereof with guide edges pointing towards the conveying path, measuring means for detecting an individual fish size and computer means for generating control signals.
Such methods are in many variants the basis of fillet production.
Such a method can be found for example in DE-C-1 454 087 which shows a typical tool sequence and arrangement for the corresponding processing of fish. In this example the fish trunk to be processed is supported by means of a push saddle in its ventral cavity and pushed with the tail in front towards pairs of dorsal and ventral knives which cut the fillets free from the dorsal and ventral spokes and then towards a pair of flank knives which are set in a roof shape relative to each other and whose cutting edges are moved into the cutting position at the moment of passage of the end of the ventral cavity and cut the fillets free from the ribs. A pair of severing knives finally ensure complete detachment of the fillets from the flanks of the vertebral column in the tail region of the fish trunk, while the latter is guided by engagement in the dorsal and ventral incisions. The size of mutual spacing of the dorsal and ventral knives to be provided is here determined by the anatomical conditions of the type of fish and fish size being processed, usually on the basis of the greatest thickness of dorsal and ventral spokes to be found in the vicinity of the vertebral column, this being the spokes in the vicinity of the head and of the end of the ventral cavity, respectively. As a result of these conditions, severing of the fillets from the dorsal and ventral spokes is effected leaving a strip of flesh on the skeleton, which comprises the aforementioned spokes and the dorsal and ventral fins together with the cartilaginous matter located at their base, so that a considerable portion of valuable muscle flesh is lost as fillet flesh.
In the endeavour to reduce this loss, according to a practised state of the art the corresponding tools of a machine which conveys the fish with the tail in front were provided with knives which exhibit axial resiliency directed towards each other and are provided with an inner chamfer. The basic distance between the knives is here set such that after initial cutting, under the effect of the inner chamfers, displacement of the knives is effected by the dorsal and ventral spokes, respectively, which become increasingly thicker in the direction of cutting. The yield obtained is based on the resulting adaptation of the thickness of the strip of flesh containing the dorsal and ventral spokes to the respective thickness thereof in the vicinity of the vertebral column. With this arrangement of the knives it turns out that at the same time also the flanks of the aforementioned fin holders are visible or palpable essentially in the cut face, so that with severing cuts of plane configuration a further yield is not obtainable.
The invention for the purpose of further increasing the yield makes use of the fact that the dorsal and ventral spokes and also the fin holders taper to a point in the region of their ends pointing towards each other, so that in conventional filleting there is still fillet flesh left between the locations of the fin holders defining the knives' distance, and the dorsal and ventral spokes, respectively.
It is the object of the invention to provide a filleting method which, starting from conventional filleting technology, allows the yield of high-value fillet flesh to be improved decisively.
This object is achieved according to the invention by the fact that the fish for severing the muscle flesh from the spokes is initially provided with incisions running along the row of fins and on both sides of the fin holders and essentially extending into the region of the tips of the spokes, and that then severing of the muscle flesh from the spokes is effected following on from the incisions adjacent to the fin holders.
An apparatus of the kind described hereinbefore which is suitable for carrying out this method is characterised in that the severing means for cutting the muscle flesh free from the dorsal and/or ventral spokes include a first and a second tool, each of which are provided with pairs of cutting means, wherein the cutting means of the first tool and the associated bone guides can be controlled in height with respect to the position of their cutting edges and guide edges, respectively, relative to the conveying path, and wherein the cutting means of the second tool are constructed as knife blades arranged between the bone guides with cutting edges pointing towards the conveying path and are resiliently displaceable away from the conveying path.
The advantages of the method according to the invention lie in particular in that cutting free of the fin holders is effected with individual adaptation of the cutting means to their thickness and flank structure and in that similarly the free cut of the dorsal and/or ventral spokes, which completes the filleting cut, can be guided directly along their flanks.
Severing of the muscle flesh in the manner according to the invention provides optimum flesh yield during corresponding processing in the region of the dorsal and ventral spokes. Here the necessary technical means for the two processing regions are essentially identical, so that the statements below on processing of the dorsal spokes can always also be applied to processing of the ventral spokes.
Preferred features of embodiment can be found in the subsidiary claims. Here the spring-resilient displacement capacity of the knife blades causes a kind of scraping cut which is oriented by the flanks of the spokes, and so ensures that the latter are scraped free with optimum yield.
Further, due to the possibility of independent control of the first tool and the bone guides, the position of the guide edges relative to the depth of incision of the first tool can be influenced. In this way, it can be achieved as is necessary for processing according to the invention, that on the one hand the tail region can be guided reliably (guide edges and knife cutting edges at one level) and that on the other hand unforced guiding in the remaining region is made possible (guide edges set back from knife cutting edges).
For reliable operation of the first tool, which also has the function of severing the tough skin, it has proved optimal if its cutting means are constructed as driven circular knives which are controllable with respect to the mutual distance between their effective cutting edges. Here, in distance control of the circular knives, altering their mutual angular position yields the possibility of adaptation to the thickness and shape of the fin holders, which vary over the length of the fish, so that cutting with optimum yield is ensured. Further optimisation of the result can also be achieved by the fact that the circular knives are resiliently displaceable in the direction of increasing the distance between them.
Finally the use of stepping motors to produce the control movements in connection with computer means allows universal and exactly reproducible control of the individual working means.
In addition to the advantages set forth above, employing the method according to the invention decreases the risk that irregularities on the skeleton such as growing together occurrences, damages and the like will cause bone portions to be split off and remain in the fillet. This method therefore is adhered t
Brocksch Rainer
Giesler Stefan
Grabau Thomas
Gutte Ulrich
Löw Sabine
Little Willis
Mattingly Stanger & Malur, P.C.
Nordischer Maschinenbau Rud. Baader GmbH + CO KG
LandOfFree
Method for stripping the muscle meat from fish and device... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for stripping the muscle meat from fish and device..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for stripping the muscle meat from fish and device... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2598751