Method for recording and storage of system information in...

Error detection/correction and fault detection/recovery – Data processing system error or fault handling – Reliability and availability

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C714S006130, C711S170000

Reexamination Certificate

active

06829721

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to a system and method for data recording in multi-board solid-state storage systems. Specifically it enables these systems to efficiently record geometry, faulty locations, security and auxiliary data, so as to improve system efficiency during testing, manufacturing and maintenance of such systems.
The expansion in usage of solid-state storage systems has created an ever-growing need for non-volatile stable and secure data recording systems on computing devices. These solid-state storage systems require solid-state memory devices, and are increasingly requiring more efficient, stable and cheaper non-volatile memory components in order to store relevant data. By the term solid-state storage system, we understand an electronic data storage system, where said data is stored on solid-state electronic components, such as Flash, EEPROM, RAM and such. That data is received from or transferred to a host computer system(s).
There are currently several existing technologies dealing with methods for recording faulty locations and other system information:
Typical solid-state storage systems consist of a main system board that carries a processing system (based on CPU and/or controller) that allows interaction with the host system, and an array of primary memory solid-state components used for information storage (such as RAM, EEPROM, Flash). That array of primary memory solid-state components can be located both on the main system's board and/or on additional boards. These primary solid-state components sometimes have intrinsic defects that lead to failures at some memory locations of the chip, but do not prohibit its use in other locations. The faulty locations of these solid-state components can be recorded in order to avoid accessing them in the future.
One method of recording such errors or faulty locations is on the primary solid-components array itself. Another method for recording of various types of errors or faults in the primary array of solid-state components, is to add a separate secondary non-volatile memory component, with lower error rate, to record these errors or faults. Since the capacity that is required for faulty location recording is very small in comparison to the capacity of the primary solid-state array, it can all be placed in one secondary non-volatile memory component, located on the main system's board. According to this method, when a system with several boards of primary solid-state components is tested, the errors or faulty locations of all the boards are recorded. However, since the error or faulty location records of different boards are placed into one component, a board cannot be simply replaced or added, because this process requires replacement or addition of the error or faulty location record information. This requires additional functionality and additional steps in the manufacturing and maintenance processes, making such a multi-board solid-state storage system more expensive.
The principles and operations of such a system may be better understood with reference to the following figures and accompanying descriptions, wherein:
FIG. 1
illustrates a typical multi-board solid-state storage system, with 3 memory boards which carry parts of solid-state component's array and one main board (which optionally carries part of solid-state component's array).
Since the capacity that is required for error and other recordings is very small in comparison to the capacity of the primary solid-state array, it can all be placed in one secondary non-volatile memory component, located on the main system's board.
FIG. 2
illustrates an example of information layout in the secondary non-volatile memory in the typical multi-board solid-state storage system. Since the error or faulty location records of different boards are placed in one component, a board cannot be simply replaced or added, because this process requires replacement or addition of the error or faulty location record information. This requires additional functionality and additional steps in the manufacturing and maintenance procedures.
There is thus a widely recognized need for, and it would be highly advantageous to have, a system and method for efficiently recording system information in multi-board solid-state storage systems, such that manufacturing and maintenance of memory boards can be executed without a need for manually processing (adding or replacing) that system information.
The present invention answers such a need by placing a secondary non-volatile memory onto every board in a multi-board system. This additional memory carries the record of faulty locations in the primary solid-state components on that board and other system information related to that board, such as primary solid-state array geometry information, manufacturing information, and security information. This allows separate or independent testing of the boards, and final construction of the solid-state system by simply connecting these boards, without the need to either test the completely constructed system or to transfer the error and other records if the boards have been tested independently. Additions or replacements in current solid-state systems require users to extract the relevant information from the one secondary non-volatile memory component, and transfer to such a component on another unit. This requires additional manufacturing or support steps, additional utilities and time. In contrast to this, having a separate secondary component, such as that prescribed by the present invention, allows a ‘plug and play’ approach. Accordingly, all that is required is to connect or replace a memory board, and it is not necessary to perform any additional steps to transfer the information. This is what is referred to as performing direct actions of manufacturing, testing, adding, connecting and/or replacing boards in response to board malfunctioning or a need to increase capacity etc. These actions can be performed in any way, be it semi-automatic, automatic or manual, These actions can be performed without the need for a separate process by which there is a transfer of the system information, relevant to the new or replaced boards, to the storage system.
The present invention is innovative in that it provides a way to efficiently manufacture and maintain a scalable data recording system. The present invention enables such secure and scalable abilities due to its ability to store critical information on various memory boards, such that each board interacts with other boards, yet can be easily updated and replaced without effecting the entire system.
The invention is non-obvious in that it is based on a notion of adding additional hardware components to a system. This seems to be a negative factor, since it requires additional expenses to manufacture and utilizes valuable board space. However this system saves much time and money in upgrading and maintenance, and is thus a more efficient system.
SUMMARY OF THE INVENTION
According to the present invention there is provided a system and method for data recording in multi-board solid-state storage systems. This data may include geometry, error or faulty location records, manufacturing, security and auxiliary data (whatever other data that is relevant to a specific board). It allows the simplification of the testing and manufacturing process of the mentioned systems.
The present invention places a secondary non-volatile memory system onto every board in multi-board system that carries primary solid-state components. This allows separate or independent testing of the boards, and final construction of the solid-state system by simply connecting these boards, without the need to either test the completely constructed system or to transfer the error or faulty location, and other records if the boards have been tested independently.
The components of the present invention are:
i) A solid state storage system
ii) Multiple boards carrying primary solid-state components (such as Flash, RAM, EEPROM

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for recording and storage of system information in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for recording and storage of system information in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for recording and storage of system information in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3320476

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.