Semiconductor device manufacturing: process – Making field effect device having pair of active regions...
Reexamination Certificate
2001-07-25
2003-12-23
Niebling, John F. (Department: 2812)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
C438S478000, C438S575000
Reexamination Certificate
active
06667196
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to semiconductor structures and devices and to a method for their fabrication, and more specifically to semiconductor structures and devices and to the fabrication and use of semiconductor structures, devices, and integrated circuits that include a monocrystalline perovskite oxide layer.
BACKGROUND OF THE INVENTION
Semiconductor devices often include multiple layers of conductive, insulating, and semiconductive layers. Often, the desirable properties of such layers improve with the crystallinity of the layer. For example, the electron mobility and band gap of semiconductive layers improves as the crystallinity of the layer increases. Similarly, the free electron concentration of conductive layers and the electron charge displacement and electron energy recoverability of insulative or dielectric films improves as the crystallinity of these layers increases.
Perovskite oxides have been grown over oxide substrates such as strontium titanate (SrTiO
3
), lanthanum aluminate (LaAlO
3
) and magnesium oxide (MgO), and more recently over silicon wafers using molecular beam epitaxy (MBE) techniques. Such techniques generally include depositing the oxide onto the substrate surface using one-layer-at-a-time or layer-by-layer shutter deposition techniques. The one-layer-at-a-time or layer-by-layer method is relatively slow because only constituents required to form a single layer are exposed to a substrate at any one time, while the constituents for the next layer are prevented from arriving at the substrate surface using shutters placed between the source and the substrate.
During the growth of the oxide film, a prior-art reflection high energy electron diffraction (RHEED) technique may be used to monitor the crystalline quality and the growth rate of the oxide film by evaluating the characteristics of the RHEED features and the intensity oscillations of a primary reflection spot. This technique generally requires that a substrate remain stationary during RHEED intensity oscillation analysis and consequently remain stationary during film deposition. Generally, film uniformity increases across a substrate if the substrate is rotated during the formation of the film.
Accordingly, a need exists for a technique to form monocrystalline perovskite oxides overlying a substrate that allows for real-time measurement of characteristics of the film, while the substrate moves relative to an analysis tool and for a method to grow the film by allowing multiple source shutters to be simultaneously open during a deposition process.
REFERENCES:
patent: 3670213 (1972-06-01), Nakawaga et al.
patent: 3766370 (1973-10-01), Walther
patent: 3802967 (1974-04-01), Ladany et al.
patent: 3914137 (1975-10-01), Huffman et al.
patent: 3935031 (1976-01-01), Adler
patent: 4006989 (1977-02-01), Andringa
patent: 4084130 (1978-04-01), Holton
patent: 4120588 (1978-10-01), Chaum
patent: 4146297 (1979-03-01), Alferness et al.
patent: 4174422 (1979-11-01), Matthews et al.
patent: 4242595 (1980-12-01), Lehovec
patent: 4284329 (1981-08-01), Smith et al.
patent: 4289920 (1981-09-01), Hovel
patent: 4297656 (1981-10-01), Pan
patent: 4392297 (1983-07-01), Little
patent: 4398342 (1983-08-01), Pitt et al.
patent: 4404265 (1983-09-01), Manasevit
patent: 4424589 (1984-01-01), Thomas et al.
patent: 4439014 (1984-03-01), Stacy et al.
patent: 4442590 (1984-04-01), Stockton et al.
patent: 4452720 (1984-06-01), Harada et al.
patent: 4459325 (1984-07-01), Nozawa et al.
patent: 4482422 (1984-11-01), McGinn et al.
patent: 4482906 (1984-11-01), Hovel et al.
patent: 4484332 (1984-11-01), Hawrylo
patent: 4503540 (1985-03-01), Nakashima et al.
patent: 4523211 (1985-06-01), Morimoto et al.
patent: 4594000 (1986-06-01), Falk et al.
patent: 4629821 (1986-12-01), Bronstein-Bonte et al.
patent: 4661176 (1987-04-01), Manasevit
patent: 4667088 (1987-05-01), Kramer
patent: 4667212 (1987-05-01), Nakamura
patent: 4681982 (1987-07-01), Yoshida
patent: 4748485 (1988-05-01), Vasudev
patent: 4756007 (1988-07-01), Qureshi et al.
patent: 4772929 (1988-09-01), Manchester et al.
patent: 4773063 (1988-09-01), Hunsperger et al.
patent: 4774205 (1988-09-01), Choi et al.
patent: 4777613 (1988-10-01), Shahan et al.
patent: 4793872 (1988-12-01), Meunier et al.
patent: 4802182 (1989-01-01), Thornton et al.
patent: 4815084 (1989-03-01), Scifres et al.
patent: 4841775 (1989-06-01), Ikeda et al.
patent: 4845044 (1989-07-01), Ariyoshi et al.
patent: 4846926 (1989-07-01), Kay et al.
patent: 4855249 (1989-08-01), Akasaki et al.
patent: 4868376 (1989-09-01), Lessin et al.
patent: 4872046 (1989-10-01), Morkoc et al.
patent: 4876208 (1989-10-01), Gustafson et al.
patent: 4876219 (1989-10-01), Eshita et al.
patent: 4882300 (1989-11-01), Inoue et al.
patent: 4885376 (1989-12-01), Verkade
patent: 4888202 (1989-12-01), Murakami et al.
patent: 4889402 (1989-12-01), Reinhart
patent: 4891091 (1990-01-01), Shastry
patent: 4896194 (1990-01-01), Suzuki
patent: 4901133 (1990-02-01), Curran et al.
patent: 4910164 (1990-03-01), Shichijo
patent: 4912087 (1990-03-01), Aslam et al.
patent: 4928154 (1990-05-01), Umeno et al.
patent: 4934777 (1990-06-01), Jou et al.
patent: 4952420 (1990-08-01), Walters
patent: 4959702 (1990-09-01), Moyer et al.
patent: 4963508 (1990-10-01), Umeno et al.
patent: 4963949 (1990-10-01), Wanlass et al.
patent: 4965649 (1990-10-01), Zanio et al.
patent: 4981714 (1991-01-01), Ohno et al.
patent: 4984043 (1991-01-01), Vinal
patent: 4999842 (1991-03-01), Huang et al.
patent: 5018816 (1991-05-01), Murray et al.
patent: 5028976 (1991-07-01), Ozaki et al.
patent: 5051790 (1991-09-01), Hammer
patent: 5053835 (1991-10-01), Horikawa et al.
patent: 5055445 (1991-10-01), Belt et al.
patent: 5055835 (1991-10-01), Sutton
patent: 5060031 (1991-10-01), Abrokwah et al.
patent: 5063081 (1991-11-01), Cozzette et al.
patent: 5063166 (1991-11-01), Mooney et al.
patent: 5067809 (1991-11-01), Tsubota
patent: 5073981 (1991-12-01), Giles et al.
patent: 5075743 (1991-12-01), Behfar-Rad
patent: 5081062 (1992-01-01), Vasudev et al.
patent: 5081519 (1992-01-01), Nishimura et al.
patent: 5103494 (1992-04-01), Mozer
patent: 5116461 (1992-05-01), Lebby et al.
patent: 5119448 (1992-06-01), Schaefer et al.
patent: 5122852 (1992-06-01), Chan et al.
patent: 5127067 (1992-06-01), Delcoco et al.
patent: 5130762 (1992-07-01), Kulick
patent: 5132648 (1992-07-01), Trinh et al.
patent: 5140651 (1992-08-01), Soref et al.
patent: 5141894 (1992-08-01), Bisaro et al.
patent: 5143854 (1992-09-01), Pirrung et al.
patent: 5144409 (1992-09-01), Ma
patent: 5155658 (1992-10-01), Inam et al.
patent: 5159413 (1992-10-01), Calviello et al.
patent: 5163118 (1992-11-01), Lorenzo et al.
patent: 5173474 (1992-12-01), Connell et al.
patent: 5173835 (1992-12-01), Cornett et al.
patent: 5181085 (1993-01-01), Moon et al.
patent: 5185589 (1993-02-01), Krishnaswamy et al.
patent: 5191625 (1993-03-01), Gustavsson
patent: 5194397 (1993-03-01), Cook et al.
patent: 5194917 (1993-03-01), Regener
patent: 5198269 (1993-03-01), Swartz et al.
patent: 5208182 (1993-05-01), Narayan et al.
patent: 5210763 (1993-05-01), Lewis et al.
patent: 5216729 (1993-06-01), Berger et al.
patent: 5221367 (1993-06-01), Chisholm et al.
patent: 5225031 (1993-07-01), McKee et al.
patent: 5227196 (1993-07-01), Itoh
patent: 5244818 (1993-09-01), Jokerst et al.
patent: 5248564 (1993-09-01), Ramesh
patent: 5260394 (1993-11-01), Tazaki et al.
patent: 5266355 (1993-11-01), Wernberg et al.
patent: 5270298 (1993-12-01), Ramesh
patent: 5280013 (1994-01-01), Newman et al.
patent: 5281834 (1994-01-01), Cambou et al.
patent: 5283462 (1994-02-01), Stengel
patent: 5286985 (1994-02-01), Taddiken
patent: 5293050 (1994-03-01), Chapple-Sokol et al.
patent: 5306649 (1994-04-01), Hebert
patent: 5310707 (1994-05-01), Oishi et al.
patent: 5312765 (1994-05-01), Kanber
patent: 5314547 (1994-05-01), Heremans et al.
patent: 5323023 (1994-06-01), Fork
patent: 5326721 (1994-07-01), Summerfelt
patent: 5334556 (1994-08-01), Guldi
patent: 5352926 (1994-10-01), Andrews
patent: 5356509 (1994-10-01), Terranova et al.
patent: 5356831 (1994
Droopad Ravindranath
Overgaard Corey
Yu Zhiyi
Lindsay Jr. Walter L.
Niebling John F.
LandOfFree
Method for real-time monitoring and controlling perovskite... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for real-time monitoring and controlling perovskite..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for real-time monitoring and controlling perovskite... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3119318