Method for producing article coated with patterned film and...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S325000, C216S024000, C216S026000, C216S087000

Reexamination Certificate

active

06723487

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a method for producing a pattern film-coated article, particularly, a method for producing a pattern film-coated article which comprises the steps of coating a photosensitive composition containing an organometallic compound having photosensitivity on a substrate, irradiating the coated composition with light to polymerize and cure the coated film and removing unexposed portions, and to a photosensitive composition.
BACKGROUND ART
The development of a photosensitive material for forming a pattern film has heretofore been under way, and a number of proposals associated with such a material have been made. In general, the properties required for the photosensitive material are, for example, (1) having high sensitivity to irradiated energy, (2) having high resolution, that is, having excellent pattern accuracy and processability and (3) having high adhesion to a substrate. It has heretofore been attempted to form a thin-film pattern of an oxide of a metal element and an amphoteric element by using a sol-gel material having photosensitivity.
The production of an optical waveguide element having a grating by exposure and development (leaching) using a photosensitive material comprising methacryloxypropyltrimethoxysilane, zirconium alkoxide and acrylic acid is described in JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, No. 9, pp. 1,640 to 1,646, SEPTEMBER, 1998, SPIE Vol. 3,282, pp. 17 to 30, and SPIE Vol. 3,282, pp. 50 to 58.
In the case of the above method, however, it is difficult to fully remove unexposed portions of the film during development after exposure, so that a good pattern cannot be obtained. Therefore, there are such problems that a waveguide laser beam leaks in the production of a waveguide and that a distinct pattern of diffracted lights cannot be obtained and the diffracted light beams are blurred or merged in the production of a diffraction grating.
DISCLOSURE OF THE INVENTION
It is therefore the object of the present invention to provide a method for producing a pattern film-coated article which has excellent film formability, can remove unexposed portions of a film completely in the development step after exposing the film to light (or has so-called “good leaching”) and has excellent pattern accuracy; and a photosensitive composition for producing the article.
According to the present invention, firstly, the above object and advantage of the present invention can be achieved by a method for producing a pattern film-coated article which comprises the steps of coating a photosensitive composition containing an organometallic or organosilicon compound having photosensitivity and a hydrolyzable metal or silicon alkoxide on a substrate, irradiating the coated film on the substrate with light to polymerize the exposed portions of the coated film and then dissolving its unexposed portions of the coated film to remove them, wherein the above organometallic or organosilicon compound is an allyl group-containing metal or silicon alkoxide.
According to the present invention, secondly, the above object and advantage of the present invention can be achieved by a method for producing a pattern film-coated article which comprises the steps of coating a photosensitive composition containing an allyl group-containing trialkoxysilane on a substrate, irradiating the coated film on the substrate with light to polymerize the exposed portions of the coated film and then dissolving its unexposed portions of the coated film to remove them.
According to the present invention, thirdly, the above object and advantage of the present invention can be achieved by a photosensitive composition comprising an allyl group-containing metal or silicon alkoxide, a photoreaction initiator, a polymerization promoter and water as main components.
PREFERRED EMBODIMENT OF THE INVENTION
Illustrative examples of the allyl group-containing metal or silicon alkoxide which has photosensitivity and which is used in the photosensitive composition of the present invention include an allyl group-containing silicon alkoxide, an allyl group-containing titanium alkoxide, an allyl group-containing zirconium alkoxide and an allyl group-containing aluminum alkoxide. Of these, the allyl group-containing silicon alkoxide is preferably used. As the allyl group-containing silicon alkoxide (to be sometimes referred to simply as “allylsilane”hereinafter), allyl group-containing trialkoxysilanes such as allyltrimethoxysilane and allyltriethoxysilane; diallyldialkoxysilanes such as diallyldimethoxysilane and diallyldiethoxysilane; allylaminotrimethoxysilane; and chloroallylsilanes such as allyltrichlorosilane and diallyldichlorosilane are used. Of these, allyltrimethoxysilane and allyltriethoxysilane are particularly preferably used. Attention must be paid to the working environment under which chloroallylsilanes are used since they produce a hydrogen chloride gas at the time of reaction.
The content of the above allyl group-containing metal or silicon alkoxide having photosensitivity in the above photosensitive composition is preferably 5 to 95.49% by weight.
Illustrative examples of the hydrolyzable metal or silicon alkoxide used in the photosensitive composition of the present invention include a silicon alkoxide, a titanium alkoxide, a zirconium alkoxide and an aluminum alkoxide. Of these, a silicon tetra- or tri-alkoxide, a titanium tetra- or tri-alkoxide, a zirconium tetra- or tri-alkoxide, and an aluminum trialkoxide are preferably used. Illustrative examples of the above tetraalkoxides and aluminum trialkoxide include tetraethoxysilane, tetramethoxysilane, tributoxyaluminum, tetrapropoxyzirconium, tetrabutoxyzirconium, tetraisopropoxytitanium and tetrabutoxytitanium.
Illustrative examples of the silicon trialkoxide, titanium trialkoxide and zirconium trialkoxide include methyltriethoxysilane, methyltrimethoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, 3-methacryloxyalkyltrialkoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-(N-allylamino)propyltrimethoxysilane, (2-cyclohexenyl-2-ethyl)trialkoxysilane, 5-(bicycloheptenyl)trialkoxysilane, (acryloxymethyl)phenethyltrialkoxysilane, 1,1-bis(trialkoxysilylmethyl)ethylene, bis(triethoxysilyl)ethylene, bis(triethoxysilyl)-1,7-octanediene, butenyltriethoxysilane, (3-cyclopentadienylpropyl)triethoxysilane, 5-hexenyltrialkoxysilane, O-(methacryloxyethyl)-N-(triethoxysilylpropyl)urethane, 1,7-octadienyltriethoxysilane, 7-octenyltrialkoxysilane, (2,4-pentadienyl)trialkoxysilane, styrylethyltrimethoxysilane, vinyltriisopropenoxysilane; titanium allylacetoacetate triisopropoxide, titanium methacrylate triisopropoxide, titanium methacryloxyethylacetoacetate triisopropoxide, (2-methacryloxyethoxy)triisopropoxytitanate; and zirconium methacryloxyethylacetoacetate triisopropoxide.
Further, an alkoxide of metal and silicon such as di-s-butoxyaluminoxytriethoxysilane and an alkoxide of different types of metals are also used. The hydrolyzable metal or silicon tetraalkoxide may be an oligomer (for example, oligomer having an average degree of polymerization of not higher than 5) and may be partially or wholly hydrolyzed. However, when the content of the hydrolyzable metal or silicon tetraalkoxide is expressed in mol % or wt %, the content of its monomer or the material before hydrolysis is expressed.
These hydrolyzable metal or silicon alkoxides may be chelated by such ligands as &bgr;-diketone, e.g., acetylacetone, methylacetylacetone, ethylacetylacetone and diethylacetylacetone, as required. Acetylacetone aluminum and titanium acetylacetonate also serve as a polymerization promoter to be described later.
Of these hydrolyzable metal or silicon alkoxides, tetraethoxysilane, tetramethoxysilane and tetrabutoxy zirconium are particularly preferably used. For example, the hardness of the film can be further increased by using tetrabutoxy zirconium. Further, by using the zirconium alkoxide and/or the titanium alkoxide, the refractive index of the film can be increased to a desired value.
By incorpo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing article coated with patterned film and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing article coated with patterned film and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing article coated with patterned film and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3192770

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.