Chemistry: analytical and immunological testing – Hemoglobin – myoglobin – or occult blood – Glycosylated hemoglobin
Reexamination Certificate
2001-03-14
2004-01-13
Wallenhorst, Maureen M. (Department: 1743)
Chemistry: analytical and immunological testing
Hemoglobin, myoglobin, or occult blood
Glycosylated hemoglobin
C436S066000, C436S164000, C436S165000, C436S169000, C436S170000, C436S177000, C436S178000, C422S051000, C422S051000, C422S051000, C422S067000, C422S067000, C422S105000
Reexamination Certificate
active
06677158
ABSTRACT:
TECHNICAL FIELD OF INVENTION
The present invention relates to a novel method for measurement of glycated hemoglobin, which is useful in the monitoring of glycemic control in people with diabetes, that can be performed without sample pretreatment and employed outside of the medical laboratory setting. The fraction of total hemoglobin that is glycated can be directly read by utilization of the method and device of the present invention.
BACKGROUND OF THE INVENTION
Glycated hemoglobin is the product of a nonenzymatic reaction resulting from the condensation of free glucose with reactive protein amino groups in the hemoglobin molecule. The amount of glycated hemoglobin in a person's blood reflects the average blood glucose concentration to which hemoglobin has been exposed during the life of erythrocytes in the circulation. Thus, in people with diabetes in whom glucose concentrations are elevated, the fraction of total hemoglobin that becomes glycated is increased. Measurement of glycated hemoglobin is useful in monitoring glycemic control in diabetic patients. Typically, a blood sample is obtained from the patient during a visit to the physician and is sent to a medical laboratory which determines the glycated hemoglobin level by one of several methods known in the art.
Methods described to measure glycated hemoglobin include column chromatography on ion exchange or affinity resins, high pressure liquid chromatography (HPLC), agarose gel electrophoresis, and immunochemical assays. Each of these has drawbacks with respect to complexity, need for costly instrumentation, accuracy, specificity or other factors, and none is suited to performance by the nontechnically trained or by the patient himself or herself. Periodic measurement of glycated hemoglobin is a mainstay in the management of patients with diabetes, who are becoming increasingly aware of the importance of glycemic control in forestalling the development of vascular and other complications of diabetes. To that end, diabetic patients are advised to regularly measure their own blood glucose concentrations, using procedures referred to as home-glucose monitoring. Such procedures allow the individual to self-assess his/her blood glucose outside of the medical laboratory setting, at any time, and as frequently as deemed advisable. Typically these procedures entail application of a drop of blood to a device that is fashioned so as to provide, by chemical or electrochemical reaction, a colored or other read-out signal that relates to the glucose concentration and can be read visually or by simple, hand-held instrumentation. There is presently no existing product that allows diabetic patients to self-assess their own glycated hemoglobin levels.
It would therefore be desirable to be able to quantify the amount of glycated hemoglobin with a method that can be performed outside of the medical laboratory setting by nontechnically trained people such as persons with diabetes, since such measurement would provide the individual with an immediate assessment of the average ambient blood glucose concentration during the preceding weeks and, therefore, an indication of need for adjustment in anti-diabetic therapy.
Various reagents are known to bind carbohydrate residues such as glucose that are linked to proteins, including conconavalin A and other lectins. Boronate reagents have been found to form 1, 2-cis-diol complexes with glucose residues in glycated proteins (Brownlee et al, Diabetes 29:1044, 1980; Abraham et al, J Lab Clin Med 102: 187, 1983; Olufemi et al, Clin Chim Acta 163:125, 1987). Most investigations have employed protein or sugar binding reagents such as DEAE or boronic acid covalently bound to carriers such as aminoethyl cellulose, polyacrylamide, agarose and Sepharose (Weith et al, Biochemistry 9:4396, 1970; Pace & Pace, Anal Biochem 107:128, 1980). These carriers have various disadvantages such as nonspecific adsorption, flow characteristics, residual charge, binding capacity, hydrophobic groups, molecular mass exclusion, and swelling or shrinking with changes in pH or ionic strength. All of them require a series of adsorption/elution steps with different solutions and collection of resultant liquid fractions and assaying for the amount of the protein of interest in these fractions. For determination of glycated hemoglobin, all of them require pretreatment of the sample before the method is initiated in order to release hemoglobin from erythrocytes, and none of them allow direct application of a blood sample to the carrier for separation of glycated from nonglycated hemoglobin. Phenylboronic acid coupled to a cross-linked co-polymer of allyl dextran with N, N-methylenebisacrylamide has been noted to have potential advantages over other carriers because of enhanced stability and greater pressure handling capacity for fast protein liquid chromatography (FPLC) applications (Bisse & Wieland, J Chromatog 575:223, 1992). However, utilization of this carrier for separation of glycated and nonglycated hemoglobins also requires column chromatography with a complex adsorption/elution scheme; additionally, before application to the column, the blood sample must be centrifuged to separate erythrocytes from plasma, and the erythrocytes must be washed several times and hemolysed. The present invention, in contrast, affords the novel and improved features of eliminating the need for any column chromatography apparatus or procedure or for any collection of liquid fractions, and allowing implementation of the method without any pretreatment of the blood sample, which can be directly applied.
Coupling of protein or sugar binding reagents such as DEAE or boronate to matrices is known in the art (U.S. Pat. No. 4269605). A general method for coupling of aminophenylboronic acid to a sephacryl matrix is known to those skilled in the art (Bisse & Wieland 575:223, 1992). A novel and improved adaptation of these principles entails the immobilization of boronate reagent or DEAE reagent onto a paper support wherein the separation of glycated and nonglycated hemoglobins is effectuated in situ without the need for elution and liquid collection steps, and the sample is applied directly, without pretreatment, to initiate the separation. This is accomplished by incorporating the principle of fluid flow, a version of which has been applied in solid phase immunoassay procedures, wherein anti-analyte antibodies that are immobilized onto a solid phase support capture the desired analyte and said capture is detected with the addition of a colored tracer or carrier (U.S. Pat. No. 5,798,273). The present invention provides the novel adaptation of this principle wherein the immobilized reagent is non-antibody
on-proteinaceous, and the detection of captured analyte does not require the addition of colored tracer or carrier for read-out.
SUMMARY OF THE INVENTION
The present invention provides a novel method for measurement of glycated hemoglobin that can be performed outside of the medical laboratory setting, affords results rapidly, and can be conveniently performed by nontechnically trained individuals at any place or time, including the home.
The invention provides a novel method for separating glycated from nonglycated hemoglobin utilizing a test strip device to achieve chemical complexation of glycated hemoglobin and eliminating the need for column chromatography.
Additionally the invention provides a novel method and device for directly measuring the fraction in an applied sample of total hemoglobin that is glycated.
The invention further provides a novel method by which glycated hemoglobin can be determined without pretreatment of the blood sample before implementation of the procedure.
The method comprises immobilization of a glycated hemoglobin binding reagent onto activated porous material, applying a sample of blood to a conjoined application pad, and dispersing the applied sample onto the glycated hemoglobin binding membrane by fluid flow after the addition of a small volume of buffer solution. The glycated hemoglobin binding membrane forms comp
Hud Elizabeth A.
Shearman Clyde W.
Wu Van-Yu
Exocell Inc.
Wallenhorst Maureen M.
LandOfFree
Method for measurement of glycated hemoglobin by a rapid... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for measurement of glycated hemoglobin by a rapid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for measurement of glycated hemoglobin by a rapid... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3186592