Method for manufacturing a semiconductor device

Semiconductor device manufacturing: process – Radiation or energy treatment modifying properties of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06624095

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a thermal treating method of a silicon wafer.
2. Description of the Background Art
As a semiconductor device is miniaturized, the time of thermal treatment applicable to the semiconductor device is shortened in recent years. To this end, rapid thermal annealing (RTA), typical of which is lamp annealing, has now been in wide use to thermally treat a semiconductor device. According to RTA, a semiconductor device is, for example, subjected to thermal annealing at a high temperature exceeding 1000° C. within a short time, by which a desired thermal annealing effect can be expected without damaging the semiconductor device.
The thermal treatment for a semiconductor device may be sometimes carried out in such a state that silicon is exposed at the surface of a wafer. In the step of forming a transistor, for example, after a gate electrode, which includes a built-up film of a doped polysilicon (D-poly film) and a tungsten silicide film (W-Si film), has been formed on a gate insulating film, the thermal treatment may be carried out under such conditions that the D-poly film and the W-Si film are exposed at the side surfaces of the gate electrode.
When a check is made for the surface condition of the wafer in which silicone is exposed at the surface thereof after thermal treatment at high temperatures of 1000° C. or over according to lamp annealing, it has been found that a number of minute foreign matters with a diameter of approximately 0.1 &mgr;m are observed on the wafer surface. Such minute foreign matters will cause the failure of a semiconductor device if the further scale down of the device is intended.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method for manufacturing a semiconductor device, which overcomes the problems involved in the prior art.
It is another object of the invention to provide a method for manufacturing a semiconductor device wherein a wafer having exposed silicon at the surfaces thereof is thermally treated without causing the occurrence of minute foreign matters.
The above objects of the present invention are achieved by a method for manufacturing a semiconductor device described below. In the method, there is transferred a wafer having an exposed portion of silicon to a thermal treatment chamber. An atmosphere of the thermal treatment chamber is converted to a reduced pressure atmosphere of an inert gas. The wafer is subjected to thermal treatment in the reduced pressure atmosphere of an inert gas
Other objects and further features of the present invention will be apparent from the following detailed description when read in conjunction with the accompanying drawings.


REFERENCES:
patent: 5135608 (1992-08-01), Okutani
patent: 5286296 (1994-02-01), Sato et al.
patent: 5401669 (1995-03-01), Falster et al.
patent: 5578132 (1996-11-01), Yamaga et al.
patent: 5829939 (1998-11-01), Iwai et al.
patent: 5853486 (1998-12-01), Ono et al.
patent: 6031205 (2000-02-01), Shimaru

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for manufacturing a semiconductor device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for manufacturing a semiconductor device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for manufacturing a semiconductor device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3079306

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.