Method for forming cornered images on a substrate and...

Semiconductor device manufacturing: process – Chemical etching – Vapor phase etching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S744000, C438S736000, C438S737000, C438S738000, C438S717000

Reexamination Certificate

active

06184151

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates generally to the manufacture of integrated circuit (IC) chips and, more specifically, to a method for forming images having sharp corners during lithographic processing by exposing the feature in two angularly intersecting directions and a photomask formed thereby.
2. Background Art
Corner rounding and image foreshortening are problems for both photomask fabrication (especially for laser writers) and also for wafer fabrication. This problem, as depicted schematically in
FIG. 1
, is usually observed for small image shapes which are near the resolution limit of the lithographic exposure tool. In mask fabrication, for example, large features print with a shape that closely approximates the designed image. The length and width of the large shapes matches the designed values, with a slight rounding of the corners of the pattern. This corner rounding can be caused by the reticle etch process, which for chrome films has historically been an isotropic, wet process. It can also be caused by the limitations in the resolution of the writing beam of the reticle expose tool, whether e-beam or optical laser. For the printing of small images, which are at or near the resolution limit of the expose took, the corner rounding becomes more pronounced, and the length of the image can be severely shortened relative to its designed length. This can be caused by several factors, including the loss of edge acuity of the aerial image at the resolution limit of the expose tool, the variation in effective exposure dose for small images relative to larger images, and the degradation of the aerial image by chemical diffusion processes in the photoresist after expose. These problems can be compounded for lithography on the wafer because the reticle rounding and shortening effects are combined with the tool and process components from the wafer processing.
Image shortening and rounding can significantly affect the ability to scale devices to smaller groundrules. For example, the capacitance of a DRAM device is directly related to the area of the storage node. As DRAM devices are scaled to smaller dimensions, the corner rounding and shortening effects reduce the capacitance values which can be attained, and constrain the ability to scale the density of the DRAM array. In another example from DRAM, the overlap of a strap connection between storage node and diffusion areas can be limited by the rounding of strap and storage node during the lithographic process. The rounding of the strap and storage node pull the features away from each other so that they fail to intersect and make an electrical connection. In order to print the features large enough that the rounded corners intersect, an electrical short defect is created at other sections of the images where rounding and shortening effects are not observed, and the over-sized patterns fuse together.
Modeling has shown that a large percentage of the image shortening is due to mask corner rounding in the 64 Mb dynamic random access memory (DRAM) design, and becomes more pronounced for the 256 Mb DRAM design.
In the present era of very large scale integration and ultra large scale integration, new techniques are continuously being developed to more efficiently utilize the space within semi-conductor devices while maintaining or improving present production efficiency.
As IC dimensions continue to shrink, printed lithographic features with minimal curvature are critical to achieve the packing density required to obtain the desired cell size.
The larger the curvatures on the images, the larger an area has to be allotted for two intersecting images. Therefore, printing of small rectangles with minimal foreshortening is becoming a difficult problem for the process fabricators as the dimensions of the structures become smaller.
Traditionally, masks have been fabricated with a single layer process in which a beam spot is rastered across an image to form a pattern. This technique inherently leads to corner rounding problems depending on the beam spot size. Smaller spots minimize the corner rounding problems, but these problems are solved at the cost of writing time and edge smoothness. Foreshortening is also becoming an increasingly large problem at the mask level, as can be seen in FIG.
2
.
What is known as the “k” factor is defined in the Rayleigh model for lithographic resolution, in the equation:
R=k&lgr;/NA
where R is the resolution, k is an empirically derived parameter that is dependent on photoresist performance, &lgr; is the exposure wavelength, and NA is the numerical aperture of the expose tool. Presently, improving the “k” factor and reducing the wavelengths of the exposure have been the subject of much research, in order to improve resolution as feature size continues to decrease.
Issues relating to corner rounding and image foreshortening are becoming more acute as one uses lower “k” factor, i.e., lower fidelity lithography processes, in both the mask process and the wafer process in order to make increasingly smaller features. As is shown
FIG. 2
in the new foreshortening data, as the design width decreases below 0.35 microns (&mgr;m) the foreshortening becomes more pronounced.
SUMMARY OF THE INVENTION
The present invention is a method of forming cornered images on a substrate comprising the steps of: (a) providing a substrate having a first layer of selectively etchable material thereon; (b) forming a plurality of parallel edged openings in the first layer of etchable material, the openings aligned to form par is of straight-edged first regions; (c) depositing a layer of selectively etchable material over the openings in said first layer of etchable material; (d) forming a second plurality of parallel edged openings in the layer of patternable material; said second plurality of openings intersecting adjacent pairs of said straight-edged first regions forming a plurality of second regions bounded by two edges of one of said first regions and two edges of one of said second region; and (e) processing the substrate in the second regions defined by said first and second openings.
In order to compensate for foreshortening problems, including curvature in the masks and printing on the wafers, the present invention provides a two-exposure method to decrease the amount of foreshortening in the photoresist. The present invention solves the problems related to image foreshortening by printing a first line in a first direction and a second line in a direction angularly offset from the first direction, thereby forming cornered images, typically rectangular or square-shaped images, at areas of intersection. The problems related to image foreshortening and corner rounding are either completely eliminated or reduced to a point where the printed image is acceptable within design parameters.
For example, the photomask of the present invention may be made using a standard, blank mask comprising a radiation blocking material, such as chrome, on a transparent substrate, such as fused silica or quartz, would be provided. Next, a hardmask material or other sacrificial layer that is relatively thin would be deposited over the entire surface. A first layer of a photoresist material is deposited, exposed to a first pattern, and developed on the surface of the hardmask in the manner commonly practiced in the art. The hardmask material is then etched, down to the chrome layer. The first layer of photoresist material is then stripped. A second layer of a photoresist material is deposited, a second pattern, having lines running in a second pattern, is aligned with the first pattern so that the lines of the second pattern angularly intersect with the lines of the first pattern. The second layer of photoresist material is exposed to the second pattern, and developed. The chrome is then etched down to the substrate. In this way, the foreshortening and curvature problems are minimized. Various alignment methods as well as phase-shifting structures may be utilized in conjunction with this method.
In another

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for forming cornered images on a substrate and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for forming cornered images on a substrate and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming cornered images on a substrate and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2587880

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.