Method for forming bottom anti-reflective coating (BARC)

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S780000

Reexamination Certificate

active

06300240

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method of forming integrated circuits on a substrate, more particularly, to a method of depositing bottom anti-reflective coating (BARC) on a substrate.
BACKGROUND OF THE INVENTION
The conventional method for defining patterns on wafers is photolithography technology. Patterns on reticles is projected on a substrate to expose photoresist material on the substrate. After the exposure of photoresist material, unexposed or exposed portions of the photoresist material is removed and a pattern, as same as the pattern on the reticles, is formed on the substrate. The photoresist layer with the patterns formed thereon usually serves as an etching mask in an etching process and the etching process forms patterns on thin film layer on the substrate.
Commonly, the linewidth limitation of integrated circuits is
20
determined by the ability of photolithography process. As the linewidth of integrated circuits is narrowed, the integrity of the integrated circuits is high. In addition, the shape of patterns formed on substrates is an important factor to decide whether or not the patterns are defined well. As usual, a photoresist pattern should be sharp enough so as to form a perfect pattern on a substrate that is under the photoresist pattern.
An approach to define a sharp photoresist pattern on a substrate involves the formation of a bottom anti-reflective coating (BARC) on a thin film layer and a pattern is then formed on the layer by using an etching process. During photolithography processes, BARC absorbs light that is projected toward wafers and reduces the reflective from the wafers in order to define sharp patterns on the wafers.
BARC material includes organic and inorganic material. Nevertheless, a sharp pattern is hardly formed on the thin film layer with organic BARC formed thereon. Commonly, silicon oxynitride material is indicated as inorganic BARC material and it is easily formed on substrates. But, a wet etching process is necessary for removing inorganic BARC from a substrate.
The organic bottom ARC is used for solving the reflective light causing the notching of photoresist. However, the organic BARC has the planarization effect and it is good for photolithography but not good for etching due to the various thickness of BARC. The oxynitride ARC film has solved the various thickness issue due to its conform film deposition. Again, the disadvantage of oxynitride ARC is not easy to remove after patterning.
Therefore, what is needed is a novel material for acting the BARC, which can be conformality formed on substrates and can be easily removed from substrates by using conventional dry etching process.
In SPIE vol. 1674 Optical/Laser Microlithography V, 1992, at pages 350-361, Yurika Suda et al. published a paper entitled of “A New Anti-reflective Layer for Deep UV lithography”. In this paper, an anti-relfective layer (ARL) is used for in sub-half-micron and quarter-micron KrF excimer laser lithography and has the advantages including improved critical dimension (C.D.) contron with the resist thickness and reduction of notching caused by reflection from the substrate. An a-C:H ARL underneath the resist and then experimented to found the most suitable film conditions.Besides, the a-C:H ARL is organic and it can be ashed as same time as the resist. Also, since the exposure and focus latitudes are high, the new shceme is promising for single-layer resist processing with KrF excimer laser lithography.
SUMMARY OF THE INVENTION
A method for forming an anti-reflective coating (ARC) on a As substrate is disclosed in the present invention. Moreover, the present invention discloses a recipe for depositing a bottom anti-reflective coating (BARC) in an etching chamber or a CVD chamber. The reactive gas in the recipe comprises several kinds of gas consisting of halogen atoms, carbon atoms and hydrogen atoms. Besides, the reactive gas could be injected into the chamber with carrier gas, which is helium gas or argon gas. The general formula of the reactive gas is C
x
H
y
X
z
, X is halogen element, wherein x ranges from 0 to 5, y ranges from 0 to 9 and z ranges from 0 to 9. In addition, the pressure in the chamber and the power exerted in the chamber are defined in the recipe.


REFERENCES:
patent: 6083572 (2000-07-01), Theil et al.
(1) Yurika Suda et al., A New Anti-reflective Layer for Deep UV Lithography, SPIE vol. 1674 Optical/laser Microlithography, pp. 350-361, (1992).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for forming bottom anti-reflective coating (BARC) does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for forming bottom anti-reflective coating (BARC), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming bottom anti-reflective coating (BARC) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2585231

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.