Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – On insulating substrate or layer
Reexamination Certificate
2001-02-27
2002-06-11
Nguyen, Viet Q. (Department: 2818)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
On insulating substrate or layer
C438S266000
Reexamination Certificate
active
06403406
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention is generally related to a process for fabricating a Thin Film Transistor (TFT) in a Liquid Crystal Display (LCD). Especially, this invention is related to a TFT composed of polycrystalline silicon and having an off-set area or a lightly doped drain (LDD) structure.
2. Description of Related Art
An LCD is comprised of two substrates with liquid crystals interjected therebetween. An LCD is controlled by applying voltages to electrodes formed on the inside surface of substrates. It displays images by controlling the transmission and interception of lights, taking advantage of the relationship between the alignment of the liquid crystal layer and a polarizor. The liquid crystal layer's alignment is controlled by the electric field applied through the TFT. An LCD employs a retardation film, a reflecting plate and color filters for its image display. A lot of efforts are devoted for a better LCD in improving a polarizer, an alignment layer, an electrode composition, a glass substrate and a rubbing technique.
A pixel circuit, a display unit of LCD, is controlled by a transistor made of a semiconductor thin film on a glass substrate. TFT LCDs can be categorized into two types by characteristics of the semiconductor thin film. One type is an amorphous Si type TFT and the other is a polycrystalline Si type TFT. Amorphous Si type TFT has advantages that it can be formed at a low temperature, while having disadvantages that it has a lower carrier mobility. Usually, an amorphous Si type TFT is used for a switch transistor of a pixel circuit. This means that a driver circuit, which needs a higher carrier mobility, should be fabricated in a separate polycrystalline silicon process, resulting in a cost increase.
Polycrystalline Si has a high carrier mobility necessary for a driver circuit, so it can be used for both a driver circuit and a pixel circuit if a high temperature in fabricating a polycrystalline Si layer is not a problem. A polycrystalline Si structure would decrease the power consumption and the manufacturing costs. However, polycrystalline Si layer requires an additional step of the laser annealing of an amorphous Si layer and may not maintain a sufficient electric field in the pixel region because the high carrier mobility renders an excessive off current flow when the TFT is turned off.
FIG. 1
shows a vertical section of a conventional thin film transistor. An insulation layer (
100
) as a buffer layer lies on the substrate (
10
). An active area (
200
) formed of a semiconductor film lies on the insulation layer and a gate insulation layer (
300
) lies on the active area. Gate (
410
) lies on the gate isolation layer over the center of the active area. Source area and drain area (
211
,
213
) are formed in an active area using the gate as implantation mask.
Current flows from source to drain when the transistor is turned on, and the display signal is applied to a pixel circuit connected to the drain. However, in a polycrystalline Si TFT, once the transistor is turned off, display signals can not be maintained in the pixel because a lot of off-currents are flowing when the transistor is turned off due to the high carrier mobility of polycrystalline Si. Usually an LDD (Lightly Doped Drain) or an off-set area that is not doped are used as a barrier structure between channel and source (or drain) to suppress the off-current.
The challenges in manufacturing a polycrystalline Si type LCD having a driver circuit and a pixel circuit on the same glass substrate are how to form a barrier structure in an N-channel TFT; how to mask the P,N ion implantation; and how to minimize the process steps.
In order to form a barrier structure, a conventionally used ion implantation mask is a photo resist pattern, a spacer around the gate, or an oxidized gate metal edge. However, a photoresist pattern as an ion implantation mask renders aligning difficulties, and is not cost effective. Also a photo resist pattern may not stand out the heat generated during the high energy ion implantation. A spacer requires an extra deposition and an etch-back of CVD (Chemical Vapor Deposition) layer. Using an oxidized gate metal edge requires an additional mask in order to prevent other areas from oxidation. Also, the device may be partially damaged during the anisotropic dry etching and extra oxidation process.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an improved process for forming an LDD or an off-set area in a polycrystalline Si type TFT. Another object of the present invention is to provide an improved process with minimum steps for forming an LDD or an off-set area in the polycrystalline Si type TFT.
The foregoing objects and other advantages of the invention are achieved, in the first aspect, by an LDD or an off-set structure that prevents the off-current while reducing the number of photolithography steps. In accordance with that aspect, a Si layer is laid on a glass substrate. An active area is formed by patterning the Si layer and a gate insulation layer is formed over the active area. Upper gate film and lower gate film are laid on the gate insulation layer and patterned to form a gate pattern of which lower gate pattern is narrower than the upper gate pattern. Source and drain regions, are ion-implanted using upper gate pattern as an implantation mask and then upper gate pattern is removed.
The off-set area is an active area that is not implanted during the iron-implantation and is defined by the size of skew that is a width difference between the upper gate pattern and the lower gate pattern. The size of the off-set area is usually limited because of the increased resistivity. An LDD is formed by a low dose implantation after removing upper gate layer. The LDD functions as a barrier structure against the off-current and also prevents the off-set area's high resistivity problem. The gate pattern can be undercut at the lower gate pattern by using a wet etchant having a high selectivity against the lower gate material. The etching step can be divided into two steps for each gate material to obtain a more accurate skew control. The etchant speed must be controlled in order to form a adequately skewed undercut in the lower gate pattern.
The foregoing objects and other advantages of the invention are further achieved in the second aspect of the present invention that prevents the off-current and provides a well activated doped area. In accordance with the second aspect, a polycrystalline Si active area is formed and patterned on a glass substrate. The following steps of forming an insulation layer on the active area, forming a lower gate layer and an upper gate layer on the insulation area, forming an upper gate pattern and an undercut lower gate pattern at the center of active area, are similar to the first aspect of the present invention. But, in the ion implantation, the low density ions are implanted first using the upper gate pattern as implant mask. Then, we form a photoresist pattern that is wider than the upper gate pattern and implant high density ions using the photoresist pattern over source and drain as implantation mask. After removing the photoresist pattern and the upper gate pattern, the ion implanted area is activated by laser annealing.
The foregoing objects and other advantages of the invention are also achieved in the third aspect by forming a polycrystalline Si type N-channel and P-channel TFT on the same glass substrate. In accordance with the third aspect, a Si layer is laid on a glass substrate. An active area is formed by patterning the Si layer. A gate insulation layer is laid on the active area and a lower gate layer is formed on the gate insulation layer. The lower gate layer is patterned leaving N-channel TFT area and P-channel gate area, then P-type impurity is implanted using the lower gate pattern as implantation mask. Upper gate layer is deposited and etched using a photo mask, leaving P-channel TFT area and N-channel gate area, and then the lower gate layer is etched
Hong Mun-Pyo
Hwang Chang-Won
Jung Byung-Hoo
Lee Joo-Hyung
Youn Chan-Joo
McGuireWoods LLP
Nguyen Viet Q.
Samsung Electronics Co,. Ltd
LandOfFree
Method for forming a TFT in a liquid crystal display does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for forming a TFT in a liquid crystal display, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming a TFT in a liquid crystal display will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2944256