Semiconductor device manufacturing: process – Formation of semiconductive active region on any substrate – Amorphous semiconductor
Reexamination Certificate
1998-02-10
2003-06-10
Meeks, Timothy (Department: 1762)
Semiconductor device manufacturing: process
Formation of semiconductive active region on any substrate
Amorphous semiconductor
C438S486000, C438S487000, C438S488000, C427S553000, C427S554000, C427S557000, C427S558000, C427S578000, C427S583000
Reexamination Certificate
active
06576534
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for forming a semiconductor. Particularly, the present invention relates to a method for forming a semiconductor film, which has an excellent crystalline property and contains less impurity in a crystalline film. The semiconductor film prepared in accordance with the method of the present invention can be used in such semiconductor device as a high quality thin film transistor having a high field effect mobility.
2. Description of the Related Art
So far, a method for crystallization of a non-crystalline silicon hydride film formed by a plasma CVD or a heat CVD method, which contains a lot of hydrogen, and a lot of bonding hands of silicon which are neutralized with hydrogen (it can be described as a-Si:H), by irradiating such laser light as CW (Continuous-wave) laser and Excimer laser has been well known.
This method, however, poses a problem that a non-crystalline silicon film as a starting film contains a lot of hydrogen, much of which spouts from the film when the film is subjected to a laser irradiation, and then a film quality deteriorates remarkably. To overcome this problem, there have been used chiefly the following three methods.
(A) At first, by irradiating a low energy density (less than threshold value energy for crystallization) laser light to a non-crystalline silicon hydride film as a sample, hydrogen in the starting film as a sample will be drawn out. And then, by irradiating a high energy density laser light to the sample, the sample will be crystallized. This is called as a multi-stage irradiation method.
(B) By forming a non-crystalline silicon hydride film, at 400° C. or more of a substrate temperature, a hydrogen content in the starting film will be decreased. Thus, a film quality deterioration by a laser irradiation will be prevented.
(C) By effecting a heat treatment of a non-crystalline silicon hydride film, in an inactive atmosphere, hydrogen in the film will be removed.
The following problems, however, have been posed, in order to obtain a high quality crystal film (in general, polycrystal silicon film) by the above mentioned methods.
(1) The method of (A) has a problem in a practical use. Namely, it is bad in an efficiency of hydrogen drawing out, difficult to control a laser energy output, and required to increase the number of laser irradiation times. Since almost all the laser light energy is absorbed in the film surface, it is difficult to draw out hydrogen, in case of a thick film.
(2) The method of (B) has a problem that a crystallization is obstructed in a later process of crystallization by a laser light. This is caused by that an impurity content in the film is inclined to increase, when a substrate temperature becomes high, and a silicon cluster (microcrystal part of silicon) is formed, if a non-crystalline silicon hydride film is formed at a high temperature.
(3) The method of (c) has a problem that an electric property (carrier mobility etc.) of the crystal film deteriorates, caused by such impurity as oxygen. This is derived from the reason that since hydrogen is eliminated by heating, a dangling bond (unpaired bonding hand) of silicon is formed, and the dangling bond combines easily with oxygen etc. then, the oxygen intrudes easily into the film from its surface to 10 to 20 nm in depth, and diffuses into the film deeply by a high temperature diffusion.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to solve the above mentioned problems. The object can be accomplished by adopting a method for forming a semiconductor in accordance with the present invention. Such a method in accordance with the present invention is described below (a) to (c).
(a) A non-crystalline (amorphous or microcrystal) silicon hydride film having a Si-H bond of high density is formed on a substrate, at a low temperature by a gas phase chemical reaction (chemical vapor deposition). As a method of the gas phase chemical reaction, such conventional method as a plasma CVD (chemical vapor deposition) method, a heat CVD (thermal chemical vapor deposition) method, and a light CVD (photo chemical vapor deposition) method can be employed. At this time, it is needed to form a non-crystalline (amorphous or microcrystal) silicon hydride film at 350° C. or lower of a substrate temperature, which is said to be an eliminating temperature of hydrogen from the non-crystalline (amorphous or microcrystal) silicon hydride. This is to increase the number of bond between silicon and hydrogen (Si-H bonding), by making hydrogen contain in a film as much as possible, in a film forming process. It is preferable to form a film at a substrate temperature as low as possible, in order to maximize Si-H bonding. However, in an actual use, it is possible to achieve the maximizing object of Si-H bonding, by forming a film at 100 to 200° C. of the substrate temperature.
Also, it is possible to prevent a silicon cluster (microcrystal of silicon) from being formed in a film, by effecting a film forming at a low temperature, and to expect a more uniform crystallization, at a later crystallizing process.
(b) Hydrogen in a non-crystalline (amorphous or microcrystal) silicon film is expelled from the silicon film and a high density dangling bond is formed in silicon, by effecting a heat treatment (thermal annealing) of the non-crystalline (amorphous or microcrystal) silicon film, which was formed in the above mentioned (a) process, in a vacuum or inactive gas atmosphere. The heat treatment in a vacuum or inactive gas atmosphere comes from that a combination (bonding) of the dangling bond of silicon and such impurity as oxygen is prevented to the utmost. It is important for the heating temperature that the substrate temperature be 350° C. or higher and also 500° C. or lower. This is based on that the eliminating temperature of hydrogen from a non-crystalline (amorphous or microcrystal) silicon hydride is about 350° C., and the crystallization starting temperature of a non-crystalline (amorphous or microcrystal) silicon is about 500° C. Also, since there is a case where the crystallization starts at 450° C., when an impurity concentration, especially oxygen in the film is low, it is preferable that this heating process to draw out hydrogen is carried out at 400° C. extent in an actual use. It is suitable that the time for the heating process is in the degree of 30 min. to 6 hrs. The inactive gas atmosphere comprises a material selected from the group consisting of N
2
, Ar, H
2
, He and a mixture thereof. In case of the inactive gas atmosphere, the heated amorphous or microcrystal film is irradiated with the laser light through a cap layer provided on the heated amorphous or microcrystal film.
Pressure of the inactive gas atmosphere is e.g. 0.5 atm. to 1.5 atm.
This heating process is to be carried out, so as to produce a lot of dangling bond, by releasing hydrogen made be contained in a non-crystalline (amorphous or microcrystal) silicon in the above (a) process. Moreover, this producing a lot of dangling bond is to make the crystallization easy, in a later crystallizing process by a laser irradiation or heating. So that it is not preferable that the non-crystalline (amorphous or microcrystal) silicon film crystallizes in this heat treatment step. The reason why the crystallization (including a cluster state in the very small region) in this heat treatment step should be avoided is based on the fact that once crystallized film will not give a good quality in an electric performance, on the contrary, it will deteriorate, even if an energy for the crystallization (e.g. irradiation energy of laser) is added.
Also, afterward, there is a crystallizing process for non-crystalline (amorphous or microcrystal) silicon film by a laser irradiation or a heating. But, it is very effective in the improvement of film crystalline property in a crystallizing process by the later laser irradiation or the heating, to maintain an atmosphere in a vacuum or inactive state and to avoid a combination (bo
Kusumoto Naoto
Zhang Honyong
Meeks Timothy
Robinson Eric J.
Robinson Intellectual Property Law Office P.C.
Semiconductor Energy Laboratory Co,. Ltd.
LandOfFree
Method for forming a semiconductor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for forming a semiconductor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming a semiconductor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3112107