Coating processes – Magnetic base or coating – Magnetic coating
Patent
1997-10-09
1999-01-12
Pianalto, Bernard
Coating processes
Magnetic base or coating
Magnetic coating
427132, 427250, 4272552, 4272557, B05D 512
Patent
active
058584552
ABSTRACT:
A method for forming a magnetoresistive sensor results in the spontaneous formation or "self-assembly" of a giant magnetoresistance multilayer structure of alternating stripes of ferromagnetic and nonferromagnetic metal that are stacked laterally on a special template layer. The template layer is a crystalline structure that has a two-fold uniaxial surface, i.e., one that is structurally invariant for a rotation by 180 degrees (and only 180 degrees) about an axis (the symmetry axis) perpendicular to the surface plane. Such a template layer is the (110) surface plane of body-centered-cubic Mo. The alternating stripes of ferromagnetic metal (such as Co or Fe) and nonferromagnetic metal (such as Ag) become spontaneously arranged laterally on the template layer during co-deposition, such as during ultrahigh vaccum evaporation, and are aligned so that the direction of compostion modulation, i.e., the direction perpendicular to the alternating stripes is along one of the unique axes of the template layer and in a plane parallel to the template layer. A crystalline base layer may be used beneath the template layer to enhance the growth of the template layer. If the template layer is (110) Mo, then the base layer may be sapphire having its (112 bar 0) plane parallel to the (110) Mo plane.
REFERENCES:
S. Araki, "Magnetism and Transport Properties of Evaporated Co/Ag Multilayers", Journal of Applied Physics, vol. 73, No. 8, Apr. 15, 1993, pp. 3910-3916.
R. Q. Hwang, "Chemically Induced Step Edge Diffusion Barriers: Dendritic Growth in 2D Alloys", Physical Review Letters, vol. 76, No. 25, Jun. 17, 1996, pp. 4757-4760.
J. M. Millunchick et al., "Spontaneous Lateral Composition Modulation In III-V Semicondcutor Alloys", MRS Bulletin, Jul. 1997, pp. 38-42.
S. S. P. Parkin et al., "Oscillations of Interlayer Exchange Coupling and Giant Magnetoresistance in (111) Oriented Permalloy/Au Multilayers", Physical Review Letters, vol. 72, No. 23, Jun. 6, 1994, pp. 3718-3721.
S. S. P. Parkin et al., "Low Field Giant Magnetoresistance in Sputtered Permalloy/Au Multilayers", Applied Physics Letters, vol. 68, No. 8, Feb. 19, 1996, pp. 1162-1164.
P. A. Schroeder et al., "Perpendicular Magnetoresistance in Ag/Co and Cu/Co Multilayers", Magnetism and Structure in Systems of Reduced Dimension, Plenum Press, 1993, pp. 129-142. (no month avail.),
X. Z. Wang et al., "Magnetostatic Modes of Lateral-magnetic-superlattice Films in a Transverse Field", Journal of Physics: Condensed Matter, vol. 9, 1997, pp. 5777-5786. (no month avail.)
C. T. Yu et al., "Giant Magnetoresistance in Fe/Ag Multilayer", Chinese Science Bulletin, vol. 39, No. 20, Oct. 1994, pp. 1680-1683.
Chambliss David Darden
Farrow Robin Frederick Charles
Marks Ronald Franklin
Tober Eric Dean
Berthold Thomas R.
International Business Machines - Corporation
Pianalto Bernard
LandOfFree
Method for forming a lateral giant magnetoresistance multilayer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for forming a lateral giant magnetoresistance multilayer , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming a lateral giant magnetoresistance multilayer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1512503