Method for forming a dual damascene aperture while employing...

Semiconductor device manufacturing: process – Including control responsive to sensed condition – Interconnecting plural devices on semiconductor substrate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S638000, C438S740000

Reexamination Certificate

active

06582974

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to methods for forming dual damascene structures within microelectronic fabrications. More particularly, the present invention relates to methods for forming low dielectric constant dual damascene structures within microelectronic fabrications.
2. Description of the Related Art
Microelectronic fabrications are formed from microelectronic substrates over which are formed patterned microelectronic conductor layers which are separated by microelectronic dielectric layers.
As microelectronic fabrication integration levels have increased and microelectronic device and patterned microelectronic conductor layer dimensions have decreased, it has become increasingly common in the art of microelectronic fabrication to employ interposed between the patterns of patterned microelectronic conductor layers when fabricating microelectronic fabrications microelectronic dielectric layers formed of comparatively low dielectric constant dielectric materials. Such comparatively low dielectric constant dielectric materials generally have dielectric constants in a range of from about 3.5 to less than about 2.0. For comparison purposes, microelectronic dielectric layers formed within microelectronic fabrications from conventional silicon oxide dielectric materials, silicon nitride dielectric materials and silicon oxynitride dielectric materials typically have comparatively high dielectric constants in a range of from greater than about 4.0 to about 8.0. Similarly, such patterned microelectronic conductor layers having formed interposed between their patterns microelectronic dielectric layers formed of comparatively low dielectric constant dielectric materials are typically formed within microelectronic fabrications while employing damascene methods, including in particular dual damascene methods.
Microelectronic dielectric layers formed of comparatively low dielectric constant dielectric materials are desirable in the art of microelectronic fabrication formed interposed between the patterns of patterned microelectronic conductor layers within microelectronic fabrications insofar as such microelectronic dielectric layers provide microelectronic fabrications which may theoretically operate at higher microelectronic fabrication speeds, with attenuated patterned microelectronic conductor layer parasitic capacitance and attenuated patterned microelectronic conductor layer cross-talk.
Similarly, damascene methods are desirable in the art of microelectronic fabrication for forming patterned microelectronic conductor layers having formed interposed between their patterns microelectronic dielectric layers formed of comparatively low dielectric constant dielectric materials insofar as damascene methods are comparatively simple fabrication methods which may often be employed to fabricate microelectronic structures which are not otherwise practicably accessible in the art of microelectronic fabrication.
While damascene methods are thus desirable in the art of microelectronic fabrication for forming patterned microelectronic conductor layers having formed interposed between their patterns microelectronic dielectric layers formed of comparatively low dielectric constant dielectric materials, damascene methods are nonetheless not entirely without problems in the art of microelectronic fabrication for forming patterned microelectronic conductor layers having formed interposed between their patterns microelectronic dielectric layers formed of comparatively low dielectric constant dielectric materials. In that regard, while damascene methods are generally successful for forming patterned microelectronic conductor layers having formed interposed between their patterns microelectronic dielectric layers formed of comparatively low dielectric constant dielectric materials, damascene methods do not always uniformly provide such patterned microelectronic conductor layers within optimally low dielectric constant dielectric material layer constructions.
It is thus desirable in the art of microelectronic fabrication to provide damascene methods which may be employed in the art of microelectronic fabrication for uniformly providing patterned microelectronic conductor layers having formed interposed between their patterns microelectronic dielectric layers formed of comparatively and optimally low dielectric constant dielectric material layer constructions.
It is towards the foregoing object that the present invention is directed.
Various damascene methods have been disclosed in the art of microelectronic fabrication for forming within microelectronic fabrications damascene structures with desirable properties.
Included among the damascene methods, but not limited among the damascene methods, are damascene methods disclosed within: (1) Yu et al., in U.S. Pat. No. 6,004,883 (a dual damascene method for forming a contiguous patterned conductor interconnect and patterned conductor stud layer within a corresponding trench contiguous with a corresponding via formed through a dielectric layer within a microelectronic fabrication absent use of an extrinsic etch stop layer when forming the corresponding trench contiguous with the corresponding via, by employing when forming the dielectric layer a bilayer dielectric layer comprising: (1) a first dielectric material layer which is not susceptible to etching within an oxygen containing plasma, having formed thereupon; (2) a second dielectric material layer which is susceptible to etching within the oxygen containing plasma); and (2) Lin et al., in U.S. Pat. No. 6,042,999 (a dual damascene method for forming a contiguous patterned conductor interconnect and patterned conductor stud layer within a corresponding trench contiguous with a corresponding via through a dielectric layer within a microelectronic fabrication while avoiding substrate damage when forming the corresponding trench contiguous with the corresponding via, by employing a sacrificial material layer formed into the via when forming contiguous therewith the trench).
Desirable in the art of microelectronic fabrication are additional damascene methods which may be employed in the art of microelectronic fabrication for uniformly providing patterned microelectronic conductor layers having formed interposed between their patterns microelectronic dielectric layers formed of comparatively and optimally low dielectric constant dielectric material layer constructions.
It is towards the foregoing object that the present invention is directed.
SUMMARY OF THE INVENTION
A first object of the present invention is to provide a damascene method for forming within a microelectronic fabrication a patterned microelectronic conductor layer having formed interposed between its patterns a microelectronic dielectric layer formed of a comparatively low dielectric constant dielectric material.
A second object of the present invention is to provide a damascene method in accord with the first object of the present invention, wherein the patterned microelectronic conductor layer is uniformly formed within an optimally low dielectric constant dielectric material layer construction.
A third object of the present invention is to provide a damascene method in accord with the first object of the present invention and the second object of the present invention, wherein the damascene method is readily commercially implemented.
In accord with the objects of the present invention, there is provided by the present invention a method for forming a dual damascene aperture within a dielectric layer. To practice the method of the present invention, there is first provided a substrate having an active product region adjacent a non active product region. There is then formed over the substrate a first dielectric layer in turn having formed thereover a second dielectric layer. There is also formed over the substrate and interposed between the first dielectric layer and the second dielectric layer an etch stop layer in the non active product region, but not in the active product r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for forming a dual damascene aperture while employing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for forming a dual damascene aperture while employing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming a dual damascene aperture while employing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3120589

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.