Method for finishing paperboard to achieve improved smoothness

Paper making and fiber liberation – Processes and products – Running or indefinite length work forming and/or treating...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C162S205000, C162S207000, C162S137000, C100S038000, C100S041000

Reexamination Certificate

active

06287424

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to calendering of paper and paperboard to improve smoothness while minimizing bulk reduction. In particular, the invention relates to calendering of paperboard having high stiffness and good smoothness.
BACKGROUND OF THE INVENTION
Liquid packaging board is a type of paperboard manufactured in the paper industry for packaging liquids such as milk and fruit juices. The product is made using one or more layers of bleached fibers and has requirements of high stiffness and good smoothness. After calendering, in which typically one side is finished to a target smoothness, both sides of the paperboard are coated, e.g., with polyethylene.
Liquid packaging board is also used in the manufacture of aseptic packaging wherein the board is laminated to a foil, e.g., aluminum foil. This laminate is then polyethylene-coated to provide a starting material for the aseptic package. In addition, liquid packaging board is used in other multilayer structures for manufacturing shelf-stable and hot-fill packaging.
The method commonly employed for obtaining good smoothness on this grade of paperboard is to calender the board in multiroll calenders referred to as wet and dry stacks. The process entails overdrying the sheet to obtain a flat moisture profile of 1-2% and then passing it through the wet stack, where water is added to the sheet in one or more calender nips using water boxes. The added moisture and applied pressure in the nips tend to develop good smoothness for the sheet. The moisture pickup is typically greater than 10-12% of the conditioned weight of the paperboard and can sometimes be as much as 15-18% of the conditioned weight of the paperboard. The sheet is then dried in an intercalender region where there can be one or more driers to remove the moisture picked up in the wet stack. The board is then passed through another multiroll stack, with one or more nips where the smoothness is further developed. One of the advantages of waterboxes is that the water applied can have other functional additives such as dyes, lubricants, binders such as starch and film formers such as polyvinyl alcohol.
While the process described is used in several existing manufacturing facilities of liquid packaging board, it has several limitations. First, overdrying of the sheet to reduce the incoming moisture into the wet stack causes the production to be slower if the drying capacity is limited. Even if the drying capacity is not limiting, overdrying involves the cost associated with drying the grade to the targeted moisture levels. Second, the waterboxes present several operational problems, including difficulty during threading and a tendency to cause breaks. Finally, calendering in several nips with a high moisture content in the sheet densifies the web significantly. In other words, the caliper and hence the flexural stiffness are significantly reduced in the wet and dry stacks. The stiffness reduction is compensated by producing the board with more fiber.
In view of the foregoing, alternative methods for improving the smoothness of the board without sacrificing bulk and stiffness are of interest. Smoothness can be developed by allowing the cellulose fibers to replicate a smooth finishing surface. This can be accomplished by heating the fibers to a temperature higher than the glass transition temperature of the fibers and pressing the fibers to a smooth surface. On the other hand, bulk preservation is expected to be better at lower temperatures, where the web is relatively incompressible. The effect of web temperature on bulk preservation of basestock used for liquid packaging board is shown in FIG.
1
. The data in
FIG. 1
shows that the cooler web (at approximately 80° F.) must be calendered at a much higher line load than the hot web (at approximately 160° F.) to achieve similar caliper reduction.
Temperature gradient calendering is a known process where the surface of the board is heated to a temperature higher than the glass transition temperature of the cellulose in the nip while the temperature of the sheet is substantially cooler. This process enables smoothness development with reduced bulk loss compared to regular machine calendering. In addition, surface moisturization can also be used to lower the glass transition temperature preferentially closer to the surface to develop smoothness without sacrificing bulk. The effect of sheet temperature on bulk preservation during temperature and moisture gradient calendering is shown in
FIGS. 2 and 3
. The data in
FIGS. 2 and 3
shows that for a given Parker smoothness, the caliper that can be attained using a cold web is higher.
Soft calendering, another method of calendering used primarily for coated substrates, also relies on the temperature gradient calendering concept but the web that is being pressed against a hot surface in a nip is supported by a roll that has a resilient cover. The resilient cover gives the paper a longer dwell time in the nip compared to hard steel nips and also allows the smoothness and gloss development to occur at relatively uniform density across the width of the paper. Soft calendering is an expensive option for existing machines and has limitations, such as cover delamination and cracking due to overheating.
A new type of calendering apparatus that extends the soft calendering concept to longer nip widths and reduces the operational problems has been described in recent patent literature. This apparatus is referred to as extended nip calendering and uses an endless band/belt over a backing roll to provide support for the paper web that is pressed against a heated cylinder. Another variation to this concept is to use a shoe instead of a roll as a backing for the paperboard. The backing shoe provides longer nip widths and hence an increased dwell time.
SUMMARY OF THE INVENTION
The present invention is a paperboard product comprising at least one layer of bleached, semi-bleached or unbleached pulp and having improved smoothness and reduced bulk loss. For paperboard having sizing without pigment, the smoothness on the printed side as measured by the Parker test is better (lower) than 6.5 when measured using a pressure of 10 kgf/cm
2
while the smoothness measured by the Hagerty/Sheffield test is not below 280 Sheffield units. For paperboard having sizing with pigment, the Parker smoothness is less than 5.0 and the Hagerty/Sheffield smoothness is not less than 180 Sheffield units.
The invention further comprises a method for finishing the above-described paperboard by applying temperature and moisture gradients to the web and then smoothing the web surface using extended nip calendering. In accordance with this method, the surface of the calendering roll is maintained at a temperature of 250-400° F. Prior to entering the extended nip, the web surface can be moisturized using steam showers. In addition to moisturization, the steam shower will also raise the temperature of the surface of the sheet. The nipload applied in the heated extended nip is preferably in the range of 300 to 2,500 pli. This finishing method is superior to waterbox calendering in that it provides a finished product having improved print performance and reduced bulk loss and stiffness.
The invention further comprises a calendering section in which a dry stack of hard calender rolls is retrofitted with a conformable belt for converting from a hard nip calendering apparatus to an extended nip calendering apparatus. The conformable belt may be either an endless belt or a seamed belt that can be seamed in place. Alternatively, the dry stack can be removed and replaced with an extended nip calender, such as a roll-backed or shoe-backed belt calender. In accordance with the retrofitting methods of the invention, the waterboxes on the wet stack of calender rolls are not used and the wet stack is primarily used for caliper control with minimal calendering.


REFERENCES:
patent: 4596633 (1986-06-01), Attwood
patent: 4749445 (1988-06-01), Vreeland
patent: 4945654 (1990-08-01), Mason
patent: 5033373 (1991-07-01

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for finishing paperboard to achieve improved smoothness does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for finishing paperboard to achieve improved smoothness, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for finishing paperboard to achieve improved smoothness will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2549750

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.