Semiconductor device manufacturing: process – Formation of electrically isolated lateral semiconductive... – Recessed oxide by localized oxidation
Reexamination Certificate
1999-01-14
2002-01-01
Wilczewski, Mary (Department: 2822)
Semiconductor device manufacturing: process
Formation of electrically isolated lateral semiconductive...
Recessed oxide by localized oxidation
C438S528000, C438S981000, C438S275000, C148SDIG001, C148SDIG001
Reexamination Certificate
active
06335262
ABSTRACT:
TECHNICAL FIELD
The present invention is concerned with a method for simultaneously fabricating different oxide thicknesses on the same semiconductor substrate. The present invention is especially advantageous when fabricating CMOS semiconductor devices and especially for providing gate oxide insulators of different thicknesses.
BACKGROUND OF INVENTION
An increasing demand exists for providing semiconductor chips having gate oxide layers of varying thicknesses. In fact, the gate oxide thickness is a major concern in terms of reliability considerations when providing integrated circuit devices containing transistors and other circuit elements that operate at differing voltage levels. By way of example, a relatively thin gate oxide of about 40 Å is typically grown in a conventional 1.8 volt, 0.25 micron process while a relatively thick gate oxide of about 70 Å is grown in a conventional 3.3 volt, 0.5 micron process.
Device scaling trends have led to low voltage operation with relatively thin gate oxides; whereas, some circuit applications still require a relatively thick gate oxide, such as driver/receiver circuitry at the chip I/O, and some analog output devices. The thick oxide is necessary for the high voltage devices in order to ensure reliability, while the thin gate oxide is desirable for the relatively fast logic devices that use low voltages at the gate. Use of relatively thick oxide for the lower voltage transistors cause poor device performance and significantly decrease the speed.
Moreover, with the trend of trying to put as many different circuits as possible in the same chip to achieve more functionality and/or improved performance (such as Merged logic-DRAM, embedded NVM microcontrols), there are even more different possible combinations for different parts of circuits in the same chip to have different gate oxide thickness to achieve the optimized performance and reliability in the system level.
One prior method of forming different gate oxide thickness on the same substrate involves multiple masking, strip, and oxide formation steps. However, such approach typically significantly increases the overall manufacturing cost and degrades the reliability as well as yield due to the potential resist residues contamination. Besides, the oxide thickness control is more difficult because the thick oxide layer results from the combination of multiple oxide formation cycles.
Another method for providing dual gate oxide thicknesses employs nitrogen implant for retarding the oxidation rate on the thin gate oxide device component, while permitting a thicker oxide to grow where the nitrogen implant has been blocked. However, the use of nitrogen implant alone has resulted in certain problems. For instance, implanting nitrogen at high doses introduces beam damage in the channel region of the device. This damage in turn results in changes in the channel impurity distributions as well as introducing silicon defects which can degrade sub-Vt leakage (off current), gate oxide breakdown voltage as well as reliability.
Low dose of nitrogen implant for thin oxide with n-type dopant (such as As) co-implant for thick oxide is another approach proposed to achieve multi-gate oxide thickness on the wafer. The problem with this process is that it depends on the dopant to enhance the oxidation rate which limits the freedom of usage because the dopant at the same time determines the substrate concentration which is a very important parameter in the device structure.
It has also been suggested to implant relatively high concentrations of fluoride ion into selected areas of a semiconductor substrate in order to increase or enhance oxide growth in those areas. The relatively high fluoride ion concentrations promote higher oxidation rates primarily through silicon damage. Moreover, use of fluoride ions are problematic since such are not compatible, for instance, with boron-doped PFET gates, as currently used in advanced logic CMOS. In particular, fluorine promotes penetration or diffusion of boron ions into the gate oxide. Accordingly, using fluoride ions as discussed in U.S. Pat. No. 5,480,828 is not especially suitable for advanced CMOS from a practical application viewpoint.
More recently, an improved process for simultaneously fabricating different oxide thicknesses on the same semiconductor substrate employs implanting chlorine and/or bromine ions into areas of a semiconductor substrate where silicon oxide having the highest thicknesses is to be formed. This improved fabrication technique is the subject matter of U.S. patent application Ser. No. 09/090,735 filed Jun. 4, 1998, entitled “Method for Fabricating Different Gate Oxide Thicknesses within the Same Chip” to Ronsheim and assigned to International Business Machines Corporation, the assignee of this application, disclosure of which is incorporated herein by reference.
Although this latter process represents a significant improvement, there still exists room for improvement.
SUMMARY OF INVENTION
The present invention provides a process for simultaneously fabricating different oxide thicknesses on the same semiconductor substrate that overcome problems of prior suggested techniques.
The present invention makes it possible to increase or extend the range of differences in thicknesses between thicker and thinner silicon dioxide layers. According to the present invention, at least two different ions are used, one being nitrogen and the other being chlorine and/or bromine. The nitrogen is used in those areas where a slower or reduced oxidation rate is desired, while chlorine and/or bromine is used in those areas where a faster oxidation rate is desired. By employing the chlorine and bromine, the dosage of the nitrogen used can be lower than that required by prior art processes. This in turn, significantly reduces, if not entirely eliminates, problems discussed above due to nitrogen doping.
According to the present invention, chlorine and/or bromine implants are employed to affect the thick oxide device regions, which are the non-critical gate dielectrics instead of the relatively thin gate oxide regions. The thin gate oxide uniformity is critical especially as the oxides are scaled to 25 Å and less. Accordingly, controlling the thickness of thin gate oxide regions is achieved according to the present invention by employing nitrogen implants.
More particularly, the present invention is concerned with a method for simultaneously fabricating different oxide thicknesses on the same semiconductor substrate. The method of the present invention comprises forming a sacrificial layer on the surface of the semiconductor. Chlorine and/or bromine ions are implanted through the sacrificial layer into areas of the semiconductor substrate where silicon dioxide having the higher thicknesses is to be formed. It is preferred according to the present invention that the chlorine and/or bromine ions be implanted at relatively low energy levels and modest dosage levels. In particular, the chlorine and/or bromine ions are typically implanted at a dose of about 2×10
13
to 2×10
15
atoms/cm
2
and at an energy of about 1 to about 15 keV.
Nitrogen ions are implanted through the sacrificial layer into areas of the semiconductor substrate where silicon dioxide having the thinner thicknesses is to be formed. It is preferred according to the present invention that the nitrogen ions be implanted at relatively low energy levels and modest dosage levels. In particular, the nitrogen ions are typically implanted at a dose of about 2×10
13
to about 2×10
15
atoms/cm
2
and an energy of about 1 to about 15 keV.
The particular sequence of the implanting steps is not crucial and can be carried out in any order.
Moreover, according to the present invention, when more than two oxide thicknesses are desired, more than one nitrogen and/or chlorine and/or bromine implantation step can be employed with different dosages of nitrogen and/or chlorine and/or bromine. This makes it possible to tailor and fine tune many silicon dioxide thicknesses as i
Crowder Scott W.
Domenicucci Anthony Gene
Han Liang-Kai
Hargrove Michael John
Ronsheim Paul Andrew
Abate Joseph P.
Connolly Bove Lodge & Hutz
Wilczewski Mary
LandOfFree
Method for fabricating different gate oxide thicknesses... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for fabricating different gate oxide thicknesses..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating different gate oxide thicknesses... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2867476