Method for fabricating a self-aligned emitter in a bipolar...

Semiconductor device manufacturing: process – Forming bipolar transistor by formation or alteration of... – Having heterojunction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06716711

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of fabrication of semiconductor devices. More specifically, the invention relates to the fabrication of silicon-germanium semiconductor devices.
2. Background Art
In a heterojunction bipolar transistor, or HBT, a thin silicon-germanium layer is grown as the base of a bipolar transistor on a silicon wafer. The silicon-germanium HBT has significant advantages in speed, frequency response, and gain when compared to a conventional silicon bipolar transistor. Speed and frequency response can be compared by the cutoff frequency which, simply stated, is the frequency where the gain of a transistor is drastically reduced. Cutoff frequencies in excess of 100 GHz have been achieved for the HBT, which are comparable to the more expensive GaAs. Previously, silicon-only devices have not been competitive for use where very high speed and frequency response are required.
The higher gain, speeds, and frequency response of the HBT have been achieved as a result of certain advantages of silicon-germanium not available with pure silicon, for example, narrower band gap, and reduced resistivity. Silicon-germanium may be epitaxially grown, however, on silicon wafers using conventional silicon processing and tools, and allows one to engineer device properties such as the band gap, energy band structure, and mobilities. For example, it is known in the art that grading the concentration of germanium in the silicon-germanium base builds into the HBT device an electric field, which accelerates the carriers across the base, thereby increasing the speed of the HBT device compared to a silicon-only device. One method for fabricating silicon and silicon-germanium devices is by chemical vapor deposition (“CVD”). A reduced pressure chemical vapor deposition technique, or RPCVD, used to fabricate the HBT device allows for a controlled grading of germanium concentration across the base layer. As already noted, speeds in the range of approximately 100 GHz have been demonstrated for silicon-germanium devices, such as the HBT.
Because the benefits of a high gain and high speed silicon-germanium HBT device can be either partially or completely negated by high base and emitter contact resistance, it is important that the resistance of the base and emitter contacts be kept low. In addition to the contact resistances, the geometry of the base and emitter regions may also affect the base and emitter resistance. For example, contact to the emitter has previously been made in a manner known in the art by designing an emitter which is “routed out” and whose width is increased to provide a satisfactory area in which to form an emitter contact. The geometry of the base region may necessitate providing a low resistance electrical pathway through a portion of the base itself between the base contact and the base-emitter junction. In order to provide lower resistance from the base contact to the base-emitter junction, the extrinsic base region is heavily doped by implantation (also called extrinsic doping). The heavily doped extrinsic base region has a reduced resistance.
The region in the base between the edge of the heavily doped extrinsic base region and the edge of the base-emitter junction is referred to as the link base region. The link base region adds a significant amount of resistance between the base contact and the base-emitter junction. It is, therefore, important for the reasons stated above that resistance of the link base region also be kept low. The resistance of the link base region is affected by the length of the link base region from the heavily doped extrinsic base region to the edge of the base-emitter junction. Since the base-emitter junction is substantially coterminous with an “intrinsic base region,” the link base region spans a distance between the intrinsic base region and the extrinsic base region. In other words, the link base region “links” the extrinsic base region to the intrinsic base region.
The length of the link base region spanning from the heavily doped extrinsic base region to the intrinsic base region must be no smaller than a certain minimum separation distance in order to provide separation between the heavily doped region of the extrinsic base and the heavily doped region of the emitter near the base-emitter junction. The link base region itself is relatively lightly doped. If the separation between the heavily doped region of the extrinsic base and the heavily doped region, of the emitter near the base-emitter junction is not greater than a minimum separation distance, the two heavily doped regions can form a high electric field junction and increase the leakage current between the emitter and the base, thereby degrading the performance characteristics of the HBT device.
Depending on the alignment of the sequence of steps in the fabrication process used to form the link base region, the intrinsic base region, the base-emitter junction, and to implant the heavily doped extrinsic base region, the distance across the link base region to the intrinsic base region can vary, often unpredictably. The distance across the link base region to the intrinsic base region is also referred to as the length of the link base region in the present application.
With perfect alignment of the sequence of steps in the fabrication process, the distance across the link base region can be minimized to the minimum separation distance just discussed. In that case, the link base resistance would also be minimized. In a fabrication process which uses two separate photomasks, for example, to form the link base region, the intrinsic base region, the base-emitter junction, and to implant the heavily doped extrinsic base region, there is always a margin of error in the alignment of the two photomask steps. Accounting for the misalignment of the two photomask steps in the fabrication process forces the fabrication of a much greater distance across the link base region than the minimum separation distance. Thus, the link base resistance is greater than the minimum possible link base resistance.
Other fabrication processes and tools have been tried in attempts to solve the problem of aligning the link base and extrinsic base to the emitter in silicon-germanium devices. One approach requires the use of selective epitaxy along with use of an inside spacer. Selective epitaxy presents a problem in that it is not currently used in high volume production of semiconductor devices. Selective epitaxy presents another problem in that selective epitaxial deposition occurs only on silicon regions and not on oxide regions. Since most process monitoring is done on oxide regions, selective epitaxy results in a substantial loss of process monitoring capability. Use of an inside spacer presents a further problem in that variability of emitter width is greater than with other methods, so some accuracy in control of emitter width is lost.
It is important to provide low resistances in the base and emitter contacts, the heavily doped extrinsic base region, and the link base region in order to improve the performance and operating characteristics of the HBT or other similar device such as a conventional bipolar transistor. Because the resistances of the base contact, the heavily doped extrinsic base region, and the link base region are in series, the reduction of any one of them will provide an improvement in the resistance of the conduction path from the base contact to the intrinsic base region of the HBT or base of other similar device. In addition, as feature sizes of bipolar devices are reduced, it is important to achieve accurate control over the size of certain features, such as the emitter width of the HBT. Furthermore, as feature size of CMOS devices is reduced it is important to achieve a concomitant reduction of feature size in bipolar devices on the same chip as CMOS devices.
Thus, there is need in the art to reduce the link base resistance by providing a fabrication process which does not rely on the alignment of separate photomas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for fabricating a self-aligned emitter in a bipolar... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for fabricating a self-aligned emitter in a bipolar..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating a self-aligned emitter in a bipolar... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3271533

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.