Method for evaluating performance of a low earth orbit...

Telecommunications – Carrier wave repeater or relay system – Monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S012100, C455S013200, C455S427000, C455S428000

Reexamination Certificate

active

06185407

ABSTRACT:

BACKGROUND
1. Technical Field
The present invention relates generally to satellite communication networks, and more particularly to a methodology for evaluating performance of a low earth orbit satellite (LEOS) system.
2. Related Art
Satellite communication systems are generally known to facilitate wireless communications across most areas of the earth's surface. Satellite communication systems may provide wireless coverage for mobile subscriber units in areas that are served neither by the public switched telephone network (PSTN) nor by cellular communication systems. The satellite communication systems may also provide a high bandwidth routing path for voice and data communications.
In a satellite communication system, at least one satellite operates from an orbit above the earth's surface. International telecommunication satellites typically operate from a geo-stationary orbit (GEO) that is approximately 36,000 kilometers above earth. Alternatively, telecommunication satellites have also been implemented in orbits closer to earth in low earth orbit satellite (LEOS) systems at an altitude from 700 kilometers to 2,000 kilometers or medium earth orbit satellite (MEOS) systems at approximately 10,000 kilometers.
In a LEOS system, a plurality of satellites orbit the earth and together provide coverage across most areas of the earth's surface. As contrasted to a GEO system in which a single satellite provides coverage over a substantial geographic area for all times, in a LEOS system the coverage area of each orbiting satellite changes over time. Thus, a first LEOS system satellite will provide coverage for a geographic area during a first time period while another LEOS system satellite provides coverage for the geographic area for a second time period, etc.
In a typical LEOS configuration, satellites are organized into orbital planes. A plurality of satellites orbits the earth in the orbital plane such that the satellites pass near the south pole and the north pole during their orbits. The satellites of each orbital plane are substantially uniformly distributed about the orbital plane and, as a whole, provide coverage for a geographic area corresponding to the orbital plane. By providing a plurality of orbital planes, each of which is separated from adjacent orbital planes by a separation angle, communications across a significant portion of the earth's surface are supported.
The number of orbital planes, the number of satellites in each orbital plane, the separation of the orbital planes, the altitude of the satellites in each orbital plane, and the inclination of each orbital plane characterizes the “constellation” of the LEOS system. The constellation essentially describes the relative positions and motion of the satellites in the LEOS system.
The LEOS system is called upon to service terrestrial communications between source and destination. Sources and destinations are devices that couple communications to the LEOS system. A source or destination may be a wireless subscriber unit, an earth station that couples the LEOS system to the PSTN or another communication network, or any other wireless device that couples to one of the satellites.
In a LEOS system, communications are not only coupled from sources and destinations to satellites, but they may be coupled between satellites as well via intersatellite links (ISLs). For the purposes of overall communication path length evaluation, each ISL may be referred to as a “hop.” Each hop consumes LEOS system resources and adds delay to the communication. Thus, it is desirable to minimize the number of hops within the LEOS system when coupling communications between sources and destinations. However, the number of hops between a first satellite servicing a source and a second satellite servicing a destination depends upon system routing behavior and the positions of the source and destination. System routing behavior is based not only upon programmed permissible connections between satellites but upon the LEOS system constellation as well.
In designing and operating a LEOS system, it is important to evaluate the behavior of the system. However, because of the dynamic nature of the satellites in the LEOS system and the time varying ISL connectivity within the LEOS system, it is difficult to evaluate the system's behavior. Thus, there is a need in the art for a methodology for evaluating system performance of the LEOS system.
SUMMARY OF THE INVENTION
To overcome the shortcomings of the prior systems and their operations, a method according to the present invention evaluates the performance of a LEOS system. The evaluation may simply determine the minimum and maximum number of hops required to service a particular source and destination pair. However, the evaluation may be for the LEOS system as a whole in which many differing source and destination pairs are considered. This evaluation may be used as a modeling tool in the design of LEOS systems. Further, this evaluation tool may also be used to evaluate the performance of a LEOS system that has already been built. This evaluation may then be employed to determine how and when the LEOS system should be employed in servicing communications.
In a particular operation according to the present invention, a LEOS system constellation is received that is to be considered. Then, a mathematical model for the LEOS system is determined. A source/destination location pair is then selected for consideration. Shortest, longest and intermediate path lengths are then determined for the source/destination location pair for the LEOS system. For each of these path lengths, the probability of occurrence of each of these path lengths as well as a corresponding delay is then determined. Further source/destination location pairs may then be selected for additional consideration. Once a sufficient number of source/destination location pairs have been considered, the performance of the LEOS system may then be evaluated.
Evaluation may include shortest, longest and intermediate path lengths (and corresponding delay times) for particular source/destination pairs. Further, the evaluation may provide average shortest, longest and intermediate path lengths for the LEOS system. These determinations may be employed for the uses described above.
Other aspects of the present invention will become apparent with further reference to the drawings and specification that follow.


REFERENCES:
patent: 5537679 (1996-07-01), Crosbie et al.
patent: 5579307 (1996-11-01), Richetta et al.
patent: 6072774 (2000-06-01), Natarajan et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for evaluating performance of a low earth orbit... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for evaluating performance of a low earth orbit..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for evaluating performance of a low earth orbit... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2585352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.