Method for enabling an optical drive to self-test analog...

Electrical computers and digital data processing systems: input/ – Input/output data processing – Peripheral monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S036000, C710S074000

Reexamination Certificate

active

06789139

ABSTRACT:

BACKGROUND
The present disclosure relates to the testing of computer systems. More specifically, the present disclosure relate to the implementation of a method and a system for testing audio components of a computer system's optical disc drive.
Information systems in general have attained widespread use in business as well as personal computing environments. An information handling system, as referred to herein, may be defined as an instrumentality or aggregate of instrumentalities primarily designed to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle or utilize any form of information, intelligence or data for business, scientific, control or other purposes. The information handling system may be configured for a specific user application or requirement such as financial transaction processing, airline reservations, enterprise data storage and/or global communications. In general, an information handling system may include a variety of hardware and/or software components that may be configured to provide information and/or consume information. An information handling system may include one or more computer systems, data storage systems, and/or networking systems.
A computer system, which is one common type of information handling system, may be designed to give independent computing power to one or a plurality of users. Computer systems may be found in many forms including, for example, mainframes, minicomputers, workstations, servers, clients, personal computers, Internet terminals, notebooks, personal digital assistants, and embedded systems.
A computer system may be available as a desktop, floor-standing unit, or as a portable unit. The computer system typically includes a microcomputer unit having a processor, volatile and/or non-volatile memory, a display monitor, a keyboard, one or more floppy diskette drives, a hard disc storage device, an optional optical drive, e.g., DVD, CD-R, CD-RW, Combination DVD/CD-RW or CD-ROM, and an optional printer. A computer system also includes a commercially available operating system, such as Microsoft Windows XP™ or Linux. A computer system may also include one or a plurality of peripheral devices such as input/output (“I/O”) devices coupled to the system processor to perform specialized functions. Examples of I/O devices include keyboard interfaces with keyboard controllers, floppy diskette drive controllers, modems, sound and video devices, specialized communication devices, and even other computer systems communicating with each other via a network. These I/O devices are typically plugged into connectors of computer system I/O interfaces such as serial interfaces and parallel interfaces, for example. Generally, these computer systems use a system board or motherboard to electrically interconnect these devices.
Computer systems also typically include basic input/output system (“BIOS”) programs to ease programmer/user interaction with the computer system devices. More specifically, BIOS provides a software interface between the system hardware and the operating system/application program. The operating system (“OS”) and application program typically access BIOS rather than directly manipulating I/O ports, registers, and control words of the specific system hardware. Well known device drivers and interrupt handlers access BIOS to, for example, facilitate I/O data transfer between peripheral devices and the OS, application program, and data storage elements. BIOS is accessed through an interface of software interrupts and contains a plurality of entry points corresponding respectively to the different interrupts. In operation, BIOS is typically loaded from a BIOS ROM or BIOS EPROM, where it is nonvolatily stored, to main memory from which it is executed. This practice is referred to as “shadowing” or “shadow RAM” and increases the speed at which BIOS executes.
Although the processor provides the “kernel” of the computer system, I/O communication between an I/O device and the processor forms a basic feature of computer systems. Many I/O devices include specialized hardware working in conjunction with OS specific device drivers and BIOS routines to perform functions such as information transfer between the processor and external devices, such as modems and printers, coupled to I/O devices.
Computer systems typically include peripheral memory storage devices such as optical disc drives with removable storage media. The removable storage media is typically used to store and/or load software, data, and documentation. Examples of optical disc drives with removable storage media include audio CD, CD-ROM, CD-R, CD-RW, DVD and combination DVD/CD-RW. To load the selected operating system on to the hard disc for the first time, the PC manufacturer typically uses a boot device to initially boot up the PC. A boot device may typically include a floppy disc or a CD-ROM.
The personal computer business is rapidly moving toward “build-to-order” manufacturing. The customer typically enters a purchase order for a computer system by selecting specific options such as processor model/speed, memory size, hard disc size, peripheral devices such as CRT monitor size, resolution, keyboard, CD-RW, DVD, printers and others. The computer system purchase order usually includes the choice for an operating system such as Windows XP™, Windows ME™, or in some cases Linux. The computer system manufacturer assembles the computer system hardware in compliance with the purchase order.
After completion of the hardware and software assembly process, the computer system undergoes extensive inspection and testing. The PC manufacturer typically ships the custom manufactured computer system within a few days to the customer after receipt of purchase order. Typically a PC manufacturer may ship several thousand “build-to-order” computer systems every day.
During the manufacturing process of a personal computer, the inspection and testing phase is typically important to identify product defects. Generally, it is more cost effective to identify and fix product defects before shipment to a customer site. The testing of personal computer peripheral devices such as optical disc drives with removable storage media is time-consuming. For example, the testing phase of the CD-ROM device typically involves manually inserting a test CD-ROM in the drive and conducting the test procedure. The “build-to-order” manufacturing process of a personal computer or the disc drive with removable media typically involves an assembly line operation capable of producing thousands of units each hour. The step of manually inserting the removable media for test purposes in the manufacturing of several thousand personal computers typically slows down the manufacturing process and also adds to the product costs.
FIG. 1
(PRIOR ART) is a diagram schematically illustrating the simplified structure of a general optical drive system. Referring to
FIG. 1
(PRIOR ART), a spindle motor
110
rotates an optical disc
115
, which is seated on a turntable
120
. On inserting the optical disc
115
in the disc drive, a clamp
125
assembly may be used to secure the position of the optical disc
115
on the turntable
120
such that the inserted optical disc
115
is frictionally coupled to the turntable
120
. Several types of clamp
125
mechanism are well known in the art, depending on the dimensions of the optical disc drive. A sensor device
130
is used for reproducing the information recorded on the optical disc
115
. A disc controller
140
controls the overall disc drive system, including the spindle motor
110
and the sensor device
130
.
For CD-ROM's, the sensor device
130
assembly (not shown) typically includes a low-power laser diode, a lens, a focussing coil, a prism and a light detecting diode. For optical disc drives, the sensor device
130
assembly (not shown) typically includes at least one low-power laser diode, focussing and positioning coils, additional optical components, and a light-detecting diode

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for enabling an optical drive to self-test analog... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for enabling an optical drive to self-test analog..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for enabling an optical drive to self-test analog... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3240603

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.