Method for eliminating residual oxygen impurities from...

Semiconductor device manufacturing: process – Chemical etching – Combined with coating step

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S701000, C438S702000, C438S706000, C438S735000, C438S745000

Reexamination Certificate

active

06309974

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a method for eliminating residual oxygen impurities from silicon wafers pulled from a crucible.
The use of zone-refined silicon for the production of active components is generally known. It has however been found for vertically structured power semiconductor components that the use of zone-refined silicon in mass fabrication is limited, since only wafers with a diameter ≦150 mm can be produced.
It is further known to use so-called epitaxial silicon wafers. These epitaxial silicon wafers are heavily doped silicon wafers to which a lightly doped epitaxial silicon layer is applied. However, the higher the threshold voltage for which the power semiconductor components to be processed are intended to be designed, the thicker the epitaxial layer must be. This in turn leads to high production costs.
Silicon wafers pulled from a crucible are also known. This is the so-called Czochralski process. It would make economic sense to use such crucible-pulled wafers, since wafers having very large diameters can be produced with the method. However, it has not to date been possible to use these Czochralski wafers in a number of applications, in particular for vertical power semiconductor components, since silicon wafers pulled from a crucible exhibit doping fluctuations (striations) and defects due to incorporated carbon and oxygen impurities, which impair the properties of the components.
The pulling of crystals from a melt using the Czochralski process is generally used for the production of single crystals. Using a suitably oriented seed crystal, which is briefly brought into contact with the molten surface and then pulled back up slowly, i.e. sometimes more slowly than 1 mm/min, it is possible to produce relatively large single crystals. The seed crystal may in this case be rotated, e.g. at 20 revolutions per minute, to ensure uniform crystallization as well as uniform incorporation of dopants provided by the melt.
It is important for the temperature profile at the boundary between the melt and the solid crystal to be vertically aligned, both in order for the growth to be free of mechanical stresses and for the doping to be homogeneous. If the surface of constant temperature is not planar, ring structures (striations) with microscopic doping fluctuations occur. Those doping fluctuations are a particular problem in the context of vertical power semiconductor components.
The choice of the crucible material is critical in the case of silicon. Available choices include quartz or graphite, graphite provided with a hard graphite surface layer (lustrous carbon), and boron nitride.
The high temperature of the melt, 1415° C., means that impurities enter the melt from the crucible material.
The two main residual impurities of silicon single crystals pulled from a crucible are small amounts of oxygen and carbon (about 0.02 ppm). The carbon impurities which occur, originating from the crucible material, are not in general of critical importance since carbon does not have a doping action in silicon. The oxygen impurities, however, are a cause for concern.
The oxygen impurities in silicon pulled from a crucible have long been used as “intrinsic” gettering sites. The silicon wafers are thereby thermally cycled to produce a defect-free zone near the surface. The thermal cycle consists of a first high temperature step at about 1100° C., followed by a low temperature step at about 650° C., and a second high temperature step at about 1000° C.
The thermal cycle, also referred to as a denuding process, is very strongly dependent on the original concentrations of oxygen and carbon in the silicon.
The first, high temperature step breaks up the oxygen deposits which are present, and thus makes it possible to diffuse the oxygen out from the surfaces of the silicon wafer. During the subsequent second, low temperature step, nuclei are produced in the bulk of the silicon wafer, i.e. below the denuded zone. Deposits grow at those nuclei during the subsequent high temperature step, and serve as gettering sites for oxygen, heavy metals and other defects during the production process.
The usable active zone in the case of this method, the so-called denuded zone, is only a few micrometers deep, thus rendering unsuitable the use of silicon wafer production, dealt with in this way, of active vertical power semiconductor components whose space charge zones extend about 100 micrometers or more into the bulk of the silicon wafer.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method of removing residual oxygen impurities from crucible-pulled silicon wafers, which overcomes the above-mentioned disadvantages of the heretofore-known methods of this general type and which is a substantially more effective method for eliminating the residual oxygen impurities that renders the wafers particularly suitable for use in the production of high-threshold vertical power semiconductor components.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for eliminating residual oxygen impurities from crucible-pulled silicon wafers, which comprises the following steps:
providing a silicon wafer with a front side and a back side;
etching a multitude of trenches into the back side of the silicon wafer;
heating the silicon wafer to a temperature of about
1100
° C in a vacuum or an inert gas atmosphere;
subsequently filling the trenches with heavily doped polysilicon; and
applying a metallization to the back side of the silicon wafer.
By virtue of this process, the oxygen deposits in the interior of the silicon wafer are broken up and they are allowed to diffuse effectively out of the silicon wafer through the surface area which is very much increased by the multitude of trenches.
Typically, the trenches are etched into the back side of the silicon wafer to a depth corresponding approximately to the space charge zone of the active vertical power semiconductor components to be processed subsequently.
In accordance with an added feature of the invention, the trenches are re-etched following the heating step. Typically, after the silicon wafer has been heated to the temperature of about 1100° C., the etched trench structure in the front side of the silicon wafer is re-etched in order to restore the precise trench contours, which may have been compromised during the heat treatment step.
In accordance with an additional feature of the invention, not only is the trench structure re-etched after the silicon wafer has been heated to a temperature of about 1100° C., but also the silicon wafer is again heated to a temperature of about 1100° C. after the re-etching. This causes the oxygen deposits to diffuse out more effectively. After this, the trench structure may again be re-etched. In all, the re-etching and heat treatment of the silicon wafer may be repeatedly performed.
In accordance with another feature of the invention, the step of filling the trenches comprises filling the trenches with heavily doped polysilicon by means of a plurality of successive epitaxy steps. This ensures that the trenches are filled without leaving gaps. All the methods known from DRAM technology may be used for this.
For special applications, the trenches may be only partly filled, then closed off for example with oxide.
In accordance with again a further feature of the invention, the silicon wafer and the epitaxially deposited polysilicon are of the same conductivity type. Alternatively, the silicon wafer and the heavily doped polysilicon are of the opposite conductivity type.
Typically, use is made of silicon wafers which have already been provided with active regions on their front side. While the front side of silicon wafers of this type, which have already been processed on the front side, is covered with a protective layer, for example an oxide layer, the heavily doped polysilicon layer is then introduced into the trenches by customary phosphorus application followed by diffusion.
If the trenches are not

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for eliminating residual oxygen impurities from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for eliminating residual oxygen impurities from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for eliminating residual oxygen impurities from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2610663

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.