Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing
Reexamination Certificate
1998-08-21
2001-10-16
Etienne, Ario (Department: 2155)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Product assembly or manufacturing
C700S028000, C700S110000, C700S030000, C700S079000
Reexamination Certificate
active
06304791
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for controlling semiconductor fabrication equipment and, more particularly, to a method for simultaneously and automatically controlling semiconductor fabrication equipment and a computer system such as a host computer.
2. Background of the Related Art
Semiconductor device fabrication includes a large number of processes, requiring a large amount of equipment (i.e., sputtering equipment, deposition equipment, etching equipment, etc.) to be disposed on a fabrication line. Within this equipment, wafers grouped as unit lots of approximately 20 to 25 wafers are processed under optimal conditions for the respective steps of the process.
If the equipment performs the process according to an offline technology, data generated during the respective steps are displayed on the monitor of the equipment. If the equipment performs the process according to an online technology, the data are stored in the data base of a host computer connected to the equipment.
FIG. 1
is a flowchart illustrating a conventional method for controlling semiconductor fabrication equipment. In the method, a determination as to whether the process is performed under the optimal process conditions for the respective steps is made through a measuring step after several steps are performed as shown in FIG.
1
. At the measuring step, it is determined whether or not the products processed through the several steps are defective. If it is determined that the products are defective at the measuring step, the result is displayed on the monitor of the equipment which performs the process, or the causes of the defects are detected using data stored in the data base of the host computer.
In other words, in the event that the process is performed under poor conditions, the determination as to whether or not the products are defective cannot be made immediately after one step is completed. Moreover, in the event that the defects in the products are detected at the measuring step after several process steps are carried out, the process steps are traced back so as to detect the causes of the defects. This may result in loss of time and material.
Such poor process conditions may occur when the process condition for a certain step has not been set to its optimal condition due to an error on the part of an engineer, when lots are continuously processed under a condition wherein process condition input was improper, or when a process is continuously performed under a condition wherein process ambient has not been set to its optimal condition due to operation failure of the equipment itself.
Accordingly, a method for equipment control is used, which method is capable of suppressing the poor condition associated with the above cases. In the method, data generated in the equipment are compared with specification values which are initially registered in the data base of the host computer. If the equipment-generated data are not in the range of the specification values, the equipment is switched to an interlocked state.
However, the method suffers from several disadvantages. When the fabrication equipment is controlled according to the method, only the equipment is interlocked and the information on the interlocked equipment (for example, the intrinsic number of the interlocked equipment) is not saved in the host computer. Thus, the actual state of the interlocked equipment is different from the state thereof recognized by the host computer. Accordingly, the host computer cannot identify the interlocked equipment.
Generally, when equipment is interlocked, an alarm signal is generated in an alarm device installed on the equipment. According to the alarm signal, the operator informs the engineer that the equipment is interlocked by means of a communication device such as a telephone. The engineer then takes appropriate action on the interlocked equipment to solve the problem thereof and informs the operator that the problem of the equipment has been solved. Then, the operator releases the interlocked state of the equipment and returns the equipment to the fabrication process. In this method, the operator must check every piece of equipment, without omission, in order to determine whether or not the equipment became interlocked during the respective fabrication steps. This work requires a great amount of time and labor. For this reason, the operator actually cannot check all the equipment.
When an operation command is accidently inputted into the host computer by the operator when the problem in the interlocked equipment has not been solved by the engineer, the host computer cannot recognize the fact and the steps of the process are continuously performed by the equipment under an improper set condition. The improperly set condition may result in an increase in defective products and degraded process reliability.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a method for controlling semiconductor fabrication equipment, which is capable of preventing an operator from accidently operating an interlocked piece of equipment. The method includes a determination of whether or not a process is being performed normally, under a process condition registered in a data base of a host computer in the range of a specific rule, at the same time that respective steps of the process being performed are completed. If it is determined that the process is not being performed normally, the equipment and a tracking module of the host computer are simultaneously interlocked and thereby the intrinsic number of the interlocked equipment is automatically inputted into the host computer. Accordingly, the host computer can recheck whether or not to introduce the following lot into the equipment. Thereby, the operator is prevented from accidently operating the interlocked equipment.
To achieve the above object and other advantages, the present invention provides a method for controlling semiconductor fabrication equipment, including the steps of: reporting process condition data, of a process being performed on a unit lot of product in a piece of the semiconductor fabrication equipment, to a host computer connected to the equipment, and determining whether or not the reported process condition data are in the range of optimal process conditions for the process as registered in a data base of the host computer. If it is determined that the reported process condition data are in the range of optimal process conditions, it is then determined whether or not the reported process condition data satisfy a specific rule registered in the host computer. If it is determined that the reported process condition data are not in the range of optimal process conditions, a step is performed of holding and analyzing the unit lot of product processed through the process and taking appropriate action. If it is determined that the reported process condition data satisfy the specific rule, the unit lot of product is allowed to proceed to a subsequent process. If it is determined that the reported process condition data do not satisfy the specific rule, additional steps are performed including simultaneously interlocking the piece of equipment and a tracking module of the host computer, automatically saving the interlocking information in the host computer and stopping the process until a cause of the operation failure is determined and removed, and repeatedly performing the above steps until the fabrication of the unit lot of product is completed.
The specific rule is a control limit derived from statistical process control (SPC) of the process. The method for controlling semiconductor fabrication equipment may further include the steps of: after analyzing the unit lot of product processed through the process and taking appropriate action, determining whether or not the unit lot of product is defective. If the unit lot of product is not defective, the unit lot of product is allowed to proceed to a subsequent process, and if the unit lot of product is
Backer Firmin
Etienne Ario
Jones Volentine PLLC
Samsung Electronics Co,. Ltd.
LandOfFree
Method for controlling semiconductor equipment interlocked... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for controlling semiconductor equipment interlocked..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for controlling semiconductor equipment interlocked... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2561941