Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Protection at a particular protocol layer
Reexamination Certificate
1998-05-27
2001-02-13
Black, Thomas G. (Department: 2771)
Electrical computers and digital processing systems: support
Multiple computer communication using cryptography
Protection at a particular protocol layer
C709S201000, C709S223000, C709S230000, C709S245000
Reexamination Certificate
active
06189102
ABSTRACT:
FIELD OF INVENTION
The present invention relates to communications in computer networks. More specifically, it relates to a method for authentication of network devices in a data-over-cable system.
BACKGROUND OF THE INVENTION
Cable television networks such as those provided by Comcast Cable Communications, Inc., of Philadelphia, Pa., Cox Communications of Atlanta Ga., Tele-Communications, Inc., of Englewood Colorado, Time-Warner Cable, of Marietta Ga., Continental Cablevision, Inc., of Boston Mass., and others provide cable television services to a large number of subscribers over a large geographical area. The cable television networks typically are interconnected by cables such as coaxial cables or a Hybrid Fiber/Coaxial (“HFC”) cable system which have data rates of about 10 Mega-bits-per-second (“Mbps”) to 30+ Mbps.
The Internet, a world-wide-network of interconnected computers, provides multi-media content including audio, video, graphics and text that typically requires a large bandwidth for downloading and viewing. Most Internet Service Providers (“ISPs”) allow customers to connect to the Internet via a serial telephone line from a Public Switched Telephone Network (“PSTN”) at data rates including 14,400 bps, 28,800 bps, 33,600 bps, 56,000 bps and others that are much slower than the about 10 Mbps to 30+ Mbps available on a coaxial cable or HFC cable system on a cable television network.
With the explosive growth of the Internet, many customers have desired to use the larger bandwidth of a cable television network to connect to the Internet and other computer networks. Cable modems, such as those provided by 3Com Corporation, of Santa Clara, Calif., Motorola Corporation, of Arlington Heights, Ill., Hewlett-Packard Co., of Palo Alto, Calif., Bay Networks, of Santa Clara, Calif., Scientific-Atlanta, of Norcross, Ga. and others offer customers higher-speed connectivity to the Internet, an intranet, Local Area Networks (“LANs”) and other computer networks via cable television networks. These cable modems currently support a data connection to the Internet and other computer networks via a cable television network with a data rate of up to 30+ Mbps, which is a much larger data rate than can be supported by a modem used over a serial telephone line.
However, most cable television networks provide only unidirectional cable systems, supporting only a “downstream” data path. A downstream data path is the flow of data from a cable system “headend” to a customer. A cable system headend is a central location in the cable television network that is responsible for sending cable signals in the downstream direction. A return data path via a telephone network (i.e., a “telephony return”), such as a public switched telephone network provided by AT&T, GTE, regional Bell Operating Companies and others, is typically used for an “upstream” data path. An upstream data path is the flow of data from the customer back to the cable system headend. A cable television system with an upstream connection to a telephony network is called a “data-over-cable system with telephony return.”
An exemplary data-over-cable system with telephony return includes customer premise equipment (e.g., a customer computer), a cable modem, a cable modem termination system, a cable television network, a public switched telephone network, a telephony remote access concentrator and a data network (e.g., the Internet). The cable modem termination system and the telephony remote access concentrator together are called a “telephony return termination system.”
The cable modem termination system receives data packets from the data network and transmits them downstream via the cable television network to a cable modem attached to the customer premise equipment. The customer premise equipment sends response data packets to the cable modem, which sends response data packets upstream via public switched telephone network to the telephony remote access concentrator, which sends the response data packets back to the appropriate host on the data network. In a two-way cable system without telephony return, the customer premise equipment sends response data packets to the cable modem, which sends the data packets upstream via the cable television network to the cable modem termination system. The cable modem termination system sends the response data packets back to the appropriate host on the data network.
As a cable modem is initialized in a data-over-cable system, it registers with a cable modem termination system to allow the cable modem to receive data over a cable television connection and from a data network (e.g., the Internet or an Intranet). The cable modem forwards configuration information it receives in a configuration file during initialization to the cable modem termination system as part of a registration request message. A cable modem also helps initialize and register any attached customer premise equipment with the cable modem termination system.
A cable modem termination system in a data-over-cable system typically manages connections to tens of thousands of cable modems. Most of the cable modems are attached to host customer premise equipment such as a customer computer. To send and receive data to and from a computer network like the Internet or an intranet, a cable modem and customer premise equipment and other network devices have a network address dynamically assigned on the data-over-cable system. Many data-over-cable systems in the prior art use a Dynamic Host Configuration Protocol (“DHCP”) as a standard messaging protocol to dynamically allocate network addresses such as Internet Protocol (“IP”) addresses. As is known in the art, the Dynamic Host Configuration Protocol is a protocol for passing configuration information to network devices on a network. The Internet Protocol is an addressing protocol designed to route traffic within a network or between networks.
As a cable modem is initialized, it will obtain a network address such as an Internet Protocol address (e.g., with a Dynamic Host Configuration Protocol) and send the network address to the cable modem termination system. The cable modem termination system stores the network address for the cable modem in an internal table. When customer premise equipment attached to a cable modem is initialized, it will also obtain a network address such as an Internet Protocol address. The network address for the customer premise equipment is stored in an internal table on the cable modem. The network address for the customer premise equipment is also stored on the cable modem termination system with a network address for a cable modem the customer premise equipment is associated with. When data arrives for the customer premise equipment from a network like the Internet or an intranet, the cable modem termination system uses the internal tables to route the data to the customer premise equipment. A network address from the data will be used to compare with network addresses from the internal tables on the cable modem termination system. The cable modem termination system will look up a network address from the data and determine that it is for customer premise equipment. Since the cable modem termination does not have direct connections to customer premise equipment, it will send the data to a cable modem associated with the customer premise equipment. The network address for the cable modem is determined from an internal table on the cable modem termination system that associates a cable modem with a customer premise equipment.
There are several problems associated with registering customer premise equipment and other network devices from a cable modem. The cable modem termination system relies on the cable modems associated with a customer premise equipment to register the network addresses of associated customer premise equipment. If the cable modem termination system has to re-boot itself, or a connection between the cable modem termination system and cable modem needs to be re-set or re-established due to a problem, the cable modem and any ass
3Com Corporation
Black Thomas G.
Lesavich Stephen
McDonnell & Boehnen Hulbert & Berghoff
Wang Mary
LandOfFree
Method for authentication of network devices in a data-over... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for authentication of network devices in a data-over..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for authentication of network devices in a data-over... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2612672