Method for addressing network components

Electrical computers and digital data processing systems: input/ – Intrasystem connection – Bus interface architecture

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S104000, C710S008000, C710S009000

Reexamination Certificate

active

06832283

ABSTRACT:

BACKGROUND AND SUMMARY OF THE INVENTION
This application claims the priority of German Application No. 100 29 645.9, filed Jun. 15, 2000, the disclosure of which is expressly incorporated by reference herein.
The invention relates to a method for addressing components of a network, especially in the case of data bus systems in transport means, in which each component is assigned a first address for the mutual communication within the network and the first addresses are stored in a central register.
Today, electronic components in transport means, for example aircraft, ships, trains or motor vehicles, are no longer connected to one another via a multiplicity of individual cable strands which are combined to form cable trees or harnesses, but via one or more networks. Such networks use a data bus in transport means that can consist of metal conductors connected to the components in the form of a ring or in the form of a star, or of optical fiber or transparent plastic data bus lines in the case of an optical data bus.
The addressing of the individual components is a central subject in connection with vehicle data buses. Since many variants are possible in the production of the vehicle, this also entails a different configuration of the data bus and its components. Thus, individual components can be omitted or also provided several times. To ensure that each individual component of the data bus is known for the data traffic, and in order to be able to address each component in a defined manner, an address is issued for each component.
German Patent document DE 198 27 337 A1 shows a data bus which is preferably used in entertainment electronics. This concerns a time-synchronous data transmission in which the data transmitted are synchronized by using a code word at the beginning of each data frame. The address is transmitted together with the data to be transmitted via the data line. However, the addressing must be re-issued every time the system is reconfigured.
In U.S. Pat. No. 5,732,074, a wireless communication between a CAN data bus installed in a motor vehicle and a control processor connected to the Internet is disclosed. The control processor can be addressed via the Internet Protocol addressing (IP Addr) normally used in the Internet. A component provided at the CAN data bus is assigned such an IP address so that it can be addressed from the Internet. Within the CAN data bus, however, the individual components are not addressed with a network or device address designating the components but with the identifier normally used in the CAN protocol which allocates a particular priority to each message. Thus, no address is issued for the destination component in the CAN, but the message itself is identified via the identifier and can thus be distinguished from the other messages. In principle, each of the messages is then received by each component, the components then selecting the individual messages on the basis of the identifier. In this arrangement, each component must contain a listing of which message having which identifier is to be received. In CAN, the messages are thus not concatinated with addresses which describe a certain destination component at the data bus, but with identifiers which designate a certain message. The CAN data bus does not have any addressing in the sense that destination addresses are issued.
German Patent document DE 40 37 143 A1 shows a control system with a central control device and a number of components which are networked together by means of a data bus for mutual communication. After the system has been switched on, each component determines its logical device address via an established method. Mutual addressing takes place via a data line of the data bus. If the entire system is switched on, for example via the ignition key, the components are supplied with power and each component determines its logical device address. The address issued by a component is transmitted together with the message in order to correlate the message with the selected component. The configuration of the overall system can be stored in a central control device and/or the individual components, independently of the operating voltage, and only needs to be newly interrogated and/or stored when it is first taken into operation and/or when a component is exchanged.
It is then the object of the present invention to develop the method initially mentioned in such a manner that differentiated addressing of the components can be performed, especially in the case of complex networks. In this arrangement, selected components should also be addressable in a simplified manner by another network, for example the Internet.
According to the invention, this object is achieved by providing that at least one particular component of the first network communicates with another network, that this component, when dialling into the second network, is assigned a second address by the latter and that, within the first network, addressing takes place on the basis of function-specific address components, identical function blocks of the components being addressed via identical function-specific address components.
According to the invention, it has been found that, in the case of complex data bus systems in transport means, the addressing of the individual components can be decisively improved if addressing takes place via a function-specific component of the address. The starting point for the invention are data buses in motor vehicles in which, in contrast to the CAN protocol, each component on the data bus is assigned an address. The problem then is that, in the case of an exchange of the components or of a disturbance, the destination addresses can change. The advantage with a function-specific addressing is that a component can be addressed via its main function block and, when components are exchanged, the device address changes but not the function.
Using optical data buses as a basis, a first type of addressing which uses the function-specific address components is provided within the data bus in addition to the standard communication, for example D2B or MOST protocol. In addition, the first addresses can be set up in the manner of the Internet Protocol so that it is possible within the data bus to perform addressing virtually as in the Internet, a part of this address, however, being the function-specific component.
Independently of this addressing within the data bus according to the invention, one of the components on the data bus is provided for communicating with another network, for example the Internet. When the communication is set up, this component then receives a second address which is assigned to it by the Internet. The first address of the component is not visible to the Internet for security reasons. A component of a network can then be advantageously addressed from another network without the local address or position of the component in the first network having to be known in the other network.
According to the invention, the component for the communication with the other network has two addresses, namely the first address for the communication within the data bus and the second address of the second network. The component which is to be addressable from the second network, for example a communication component, allocates the addresses in accordance with the direction of communication to one or the other network.
The addressing in a network, for example the data bus, can take place, on the one hand, via an address component which describes the local arrangement of the components along the data bus such as can be the case, for example, in the D2B or MOST protocol and/or via a function-specific address component which describes the function of a component or its subordinate function blocks. Most of the components are constructed as control devices, the function blocks designating certain units such as, for example, an amplifier or a unit which controls the car telephone. Each function block can consist of hardware and associated software.
The special feature of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for addressing network components does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for addressing network components, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for addressing network components will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3307122

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.