Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...
Reexamination Certificate
1999-10-01
2002-05-21
Winakur, Eric F. (Department: 3736)
Surgery
Diagnostic testing
Measuring or detecting nonradioactive constituent of body...
C600S336000, C600S310000, C600S324000
Reexamination Certificate
active
06393311
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to the field of signal processing. More particularly, this invention relates to processing measured signals to remove unwanted signal components caused by noise and especially noise caused by motion artifacts.
2. State of the Art
The measurement of physiological signals can often be difficult because the underlying physiological processes may generate very low level signals. Furthermore, interfering noise is inherent in the body and the interface between the body and sensors of physiological processes, Examples of physiological measurements include: measurement of electrocardiogram (ECG) signals based on the electrical depolarization of the heart muscle, blood pressure, blood oxygen saturation, partial pressure of CO
2
, heart rate, respiration rate, and depth of anesthesia. ECG signals, for example, are typically detected by surface electrodes mounted on the chest of a patient. ECG signals are weak at the signal source (i.e., the heart) and are even weaker at the surface of the chest. Furthermore, electrical interference from the activity of other muscles (e.g., noise caused by patient breathing, general movement, etc.) causes additional interference with physiological signals such as an ECG. Thus, considerable care must be taken in the design and use of physiological processors to enhance the quality of the true signal and reduce the effects of interfering noise signals.
It is convenient to characterize a measured signal as being a composite signal composed of a true signal component and a noise signal component. The terms “measured signal” and “composite signal” will be used interchangeably hereinafter. Signal processors are frequently used to remove noise signal components from a composite measured signal in order to obtain a signal which closely, if not identically, represents the true signal. Conventional filtering techniques such as low pass, band pass, and high pass filtering can be used to remove noise signal components from the measured composite signal where the noise signal component occupies a frequency range outside the true signal component. More sophisticated techniques for conventional noise filtering include multiple notch filters, which are suitable for use where the noise signal component exists at multiple, distinct frequencies, all outside the true signal frequency band.
However, it is often the case that the frequency spectrum of the true and noise signal components overlap and that the statistical properties of both signal components change with time. More importantly, there are many cases where little is known about the noise signal component. In such cases, conventional filtering techniques are ineffective in extracting the true signal.
The measurement of oxygen saturation in the blood of a patient is a common physiological measurement the accuracy of which may be compromised by the presence of noise. Knowledge of blood oxygen saturation can be critical during surgery. There are means of obtaining blood oxygen saturation by invasive techniques, such as extracting and testing blood removed from a patient using a co-oximeter. But, such invasive means are typically time consuming, expensive, and uncomfortable for the patient. Fortunately, non-invasive measurements of blood oxygen saturation can be made using known properties of energy attenuation as a selected form of energy passes through a bodily medium. Such non-invasive measurements are performed routinely with a pulse oximeter.
The basic idea behind such energy attenuation measurements is as follows. Radiant energy is directed toward a bodily medium, where the medium is derived from or contained within a patient, and the amplitude of the energy transmitted through or reflected from the medium is then measured. The amount of attenuation of the incident energy caused by the medium is strongly dependent on the thickness and composition of the medium through which the energy must pass, as well as the specific form of energy selected. Information about a physiological system can be derived from data taken from the attenuated signal of the incident energy transmitted or reflected. However, the accuracy of such information is reduced where the measured signal includes noise. Furthermore, non-invasive measurements often do not afford the opportunity to selectively observe the interference causing the noise signal component, making it difficult to remove.
A pulse oximeter is one example of a physiological monitoring system which is based upon the measurement of energy attenuated by biological tissues and substances. More specifically, a pulse oximeter measures the variable absorption caused by arterial blood volume changes. Pulse oximeters transmit electromagnetic energy at two different wavelengths, typically at 660 nm (red) and 940 nm (infrared, hereinafter IR) into the tissue and measure the attenuation of the energy as a function of time. The output signal of a pulse oximeter is sensitive to the pulsatile portion of the arterial blood flow and contains a component which is a waveform representative of the patient's arterial pulse. This type of signal, which contains a component related to the patient's pulse, is called a plethysmographic waveform or plethysmogram.
Pulse oximetry measurements typically use a digit, such as a finger, or an ear lobe or other element of the body, where blood flows close to the skin as the medium through which light energy is transmitted. The finger, for example, is composed of various tissues and substances including skin, fat, bone, muscle, blood, etc. The extent to which each of these biological tissues and substances attenuate incident electromagnetic energy is generally known. However, the effect of motion can cause changes in the optical coupling of the sensor (or probe) to the finger, the underlying physiology, the local vasculature, optical properties of tissues due to changing optical path length as well as combinations and interactions of the all of the above. Thus, patient motion may cause erratic energy attenuation.
A typical pulse oximeter includes a sensor, cabling from the sensor to a computer for signal processing and visual display, the computer and visual display typically being included in a patient monitor. The sensor typically includes two light emitting diodes (LEDs) placed across a finger tip and a photodetector on the side opposite the LEDs. Each LED emits a light signal at different frequencies. The detector measures both transmitted light signals once they have passed through the finger. The signals are routed to a computer for analysis and. display of the various parameters measured.
The underlying physical basis of a pulse oximeter is Beer's law (also referred to as Beer-Lambert's or Bouguer's law) which described attenuation of monochromatic light traveling through a uniform medium which absorbs light with the equation:
I
transmitted
=I
incident
e
−dc&agr;(&lgr;)
, (1)
where I
transmitted
is the intensity of the light transmitted through the uniform medium, I
incident
is the intensity of incident light, d is the distance light is transmitted through the uniform medium, c is the concentration of the absorbing substance in the uniform medium, expressed in units of mmol L
−1
, and &agr;(&lgr;) is the extinction or absorption coefficient of the absorbing substance at wavelength &lgr;, expressed in units of L/(mmol cm). The properties of Beer's law are valid even if more than one substance absorbs light in the medium. Each light absorbing substance contributes its part to the total absorbance.
Each LED emits light at different wavelengths, typically red (centered at about 660 nm) and IR (centered at about 940 nm) frequency bands. The intensity of light transmitted through tissue, I
transmitted
, is different for each wavelength of light emitted by the LEDs. Oxyhemoglobin (oxygenated blood) tends to absorb IR light, whereas deoxyhemoglobin (deoxygenated blood) tends to absorb red light. Thus, the absorption of IR light rel
Allo, Jr. August J.
DelFavero John R.
Edgar, Jr. Reuben W.
Jaffe Michael B.
Martin Jesus D.
Kremer Matthew
NTC Technology Inc.
TraskBritt
Winakur Eric F.
LandOfFree
Method, apparatus and system for removing motion artifacts... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method, apparatus and system for removing motion artifacts..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method, apparatus and system for removing motion artifacts... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2901415