Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements
Reexamination Certificate
2000-04-13
2003-10-21
Cabeca, John (Department: 2173)
Computer graphics processing and selective visual display system
Display driving control circuitry
Controlling the condition of display elements
C345S215000
Reexamination Certificate
active
06636243
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to information display, and more particularly to a method and system for displaying the status of variables, or indicators, on diverse display devices, and for providing a history indicating changes in the status which have occurred. This method may be useful for multiple applications involving information display, including, for example, platform management in heterogeneous systems.
2. Description of the Related Art
The following descriptions and examples are not admitted to be prior art by virtue of their inclusion within this section.
The continuing proliferation of powerful, convenient computational devices has been accompanied by an increase in the use of networks connecting these devices. Computational devices include computers and other, often portable, devices such as wireless telephones, personal digital assistants (PDA's), automobile-based computers and appliance-based computers. Such computational devices are also sometimes termed “pervasive devices”. “Computer”, as used herein, may refer to any of such computational devices. The networks connecting computational devices may be “wired” networks, formed using “land lines” such as copper wire or fiber optic cable, wireless networks employing earth and/or satellite-based wireless transmission links, or combinations of wired and wireless network portions. Networked computational devices are increasingly configured with the ability to interact and communicate with one another. For example, electronic mail may currently be sent to some wireless telephones and pagers, and PDA's may be used to access some Internet and World Wide Web (or “web”) sites.
Many network-based applications involve monitoring variables of interest, which may be called “critical indicators”. For example, a system administrator for a computer system or network may need to monitor variables such as transaction rates, application program status, and disk space availability. Such variables may be considered critical indicators in that they are important indicators of the health of the system or network. Alternatively, an investor may wish to monitor a variable such as a stock price, and may particularly want to be alerted if the price rises above or falls below a particular critical value. Entertainment-oriented applications may also involve monitoring of critical indicators. For example, a horse-racing enthusiast may wish to know whether a particular race has started or finished, and/or whether a particular horse has placed above or below a particular level. Monitoring of such critical indicators using a computational device is typically done through a graphical user interface (GUI) on the device's display screen. Many different display formats are possible. For example, a bar graph could be used to indicate values of various indicators, where the heights of the bars vary with time to follow the indicator values. Icons representing each indicator may also be displayed on a screen, where selection of an icon by a user results in a text display containing information regarding the status of the indicator. To indicate when a variable has crossed a threshold value, various methods may be used, such as changing the shape or color of an icon representing the variable, or not displaying an icon unless the corresponding variable has crossed a threshold value.
The above-described methods of monitoring critical indicators may result in difficulties, however, for users of diverse computational devices having varying display screen capabilities. The trend in size and capability of such display screens often depends upon whether the device is fixed or portable. For example, displays associated with desktop computers are generally getting larger, to provide ease of viewing and/or accommodate increasingly complex applications and operating systems. Such displays typically have a wide range of colors available, as well. On the other hand, displays associated with portable devices such as wireless telephones and PDA's are small and often getting smaller, to enhance, e.g., portability and battery life. These small displays also tend to be monochrome displays rather than color, because of cost, resolution and power considerations. Although not necessarily portable, displays included in automobiles or appliances may also be small monochrome displays, to keep costs down and avoid taking space needed for other functions of the system. This variation in display size and capability for different computational devices means that a GUI which allows effective monitoring of critical indicators when a system administrator's console is used may be very difficult to use when connected remotely with a cellular telephone. For example, text descriptions or icon variations easily understood using a large display may be indistinguishable on a small one. Differences in color used to distinguish, e.g., threshold crossings of variables are naturally not effectively discerned on a monochrome display.
One approach to the problems presented by differing display capabilities would be to use different representations of critical indicators to be monitored on different displays, with more complex (and possibly more complete) representations used for higher-capability displays. Such an approach may be disadvantageous, however, in requiring a user of multiple display screens to become familiar with multiple representations of the monitored indicators. Use of multiple representations may make it more difficult to develop a desirable intuitive feel for any one representation. It would therefore be desirable to develop a method and system of monitoring critical indicators which may be effectively used on displays having diverse sizes and capabilities.
SUMMARY OF THE INVENTION
The problems outlined above are in large part addressed by a method and system in which icons representing critical indicators are displayed in superposition with a reference shape. The reference shape is divided into “higher-interest” and “lower-interest” portions, such that display of an icon over the higher-interest portion of the reference shape indicates a higher-interest value of the corresponding variable. In the case of a system administration application, for example, display of an icon over the higher-interest portion may indicate that the value of the corresponding variable has crossed a threshold into a range associated with a performance problem for the system or network. For a stock-monitoring application, display of an icon over the higher-interest portion could indicate, for example, that the price of the corresponding stock has crossed a “buy” or “sell” threshold preset by the user. In the case of the horse-racing example mentioned above, display of an icon over the higher-interest portion may indicate, for example, that a corresponding race is currently underway, or that a particular horse corresponding to the icon has placed at or above a preset level (e.g., second place) in its most recent race.
The reference shape is preferably elongated horizontally, and an upper portion of the shape is typically designated as the higher-interest portion, while the lower portion of the shape is designated the lower-interest portion. In one preferred embodiment, the reference shape is an elongated oval. Multiple icons, corresponding to multiple monitored variables, may be displayed over the reference shape. Each monitored variable is preferably allocated a vertical “slice” of the reference shape, such that the position of the corresponding icon when the variable is in the higher-interest state is laterally aligned with (i.e., along the same vertical line as) the position of the icon when the variable is in the lower-interest state. In some embodiments, a single icon representing the present status of the corresponding variable is positioned over either the higher-interest or lower-interest portion of the reference shape. Alternatively, two icons may be used for each variable, where one is positioned over the higher-interest p
Cabeca John
Conley & Rose, P.C.
Daffer Kevin L.
Detwiler Brian
International Business Machines Corp.
LandOfFree
Method and system for displaying status of critical... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for displaying status of critical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for displaying status of critical... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3156283