Telecommunications – Radiotelephone system – Usage measurement
Reexamination Certificate
1998-09-14
2002-10-29
Trost, William (Department: 2683)
Telecommunications
Radiotelephone system
Usage measurement
C455S422100, C455S426100, C455S414200, C455S550100, C455S408000, C455S403000
Reexamination Certificate
active
06473609
ABSTRACT:
AUTHORIZATION WITH RESPECT TO COPYRIGHTS
A portion of the present disclosure contains material subject to copyright protection. Such material includes, but is not limited to, an Appendix entitled “Imp Specification protocols between Femto Engine and Terminal”. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to data communications, and in particular to interactive two-way communication mobile devices that permit a user to interact with a network server providing hypermedia information through a data network. Such a data network can include, for example, the Internet and a wireless network. The mobile devices may include cellular telephones, two-way pagers, or a palm-sized computing devices and typically have limited computing resources.
2. Description of the Related Art
The Internet is a rapidly growing communication network of interconnected computers and computer networks around the world. Together, these connected computers form a vast repository of multimedia information that is readily accessible by the connected computers from anywhere at any time. To navigate a portion of the Internet organized as the “World Wide Web”, the connected computers, e.g., workstations and desktop computers, typically operate a user interface called a “browser”. A browser is a client application program that generally requests multimedia information throughout the Internet using, typically, the Hypertext Transfer Protocol (HTTP). A computer which operates a browser using HTTP is generally a relatively powerful computer with sufficient computing resources, such as processing power, memory, a display capability and a user interface.
To provide mobility and portability of access to the Internet, interactive two-way communication mobile devices capable of communicating, via wireless data networks, with the Internet have been introduced. The interactive two-way communication mobile devices (e.g., two-way pagers, cellular phones, palm-sized computing devices and personal digital assistants (PDAs)) are among the fastest emerging communication devices. These devices enable users to receive, collect, analyze, review and disseminate information as the users travel or move about. Unlike computers coupled to the Internet, the mobile devices are characterized by severe limitations in computing resources. For example, a cellular phone has less than one percent processing power of a typical desktop personal computer, generally less than 128 kilobytes of memory, an LCD display which is perhaps four lines high by twelve or twenty characters, and limited or non-existent graphics capabilities. Further, a cellular phone inputs using a keypad that has far fewer keys than a typical personal computer (PC) keyboard. With these constraints, a mobile device cannot efficiently operate the browser used by desktop computers to navigate the Internet.
To make available to mobile devices computing resources comparable to a desktop computer is too costly. There is, therefore, a great need for a solution that enables mobile devices to freely access information on the Internet without providing these computing resources in the mobile devices.
Additionally, mobile devices are typically serviced through one or more wireless service carriers. The wireless service carriers often provide additional services by upgrading client application programs in the mobile devices. In conventional computers, an upgrade can be accomplished by downloading a new version of an application program from a service provider. In mobile devices, downloading a new version of an application program can be a prohibitive task, limited by the performances of the computing resources and the wireless network. Hence, there is a further need for an ability to manage client application programs operated by the mobile devices.
SUMMARY OF THE INVENTION
The present invention addresses the above described problems and is particularly applicable to navigation of Internet web pages by two-way interactive communication mobile devices (e.g., mobile computing devices, cellular phones, palm-sized computer devices, personal digital assistant devices and Internet-capable appliance remote controllers) which are capable of wireless communication via a link server with service providers or network servers on the Internet. Despite the common deficiencies of mobile devices (i.e., a primitive processor, little memory and limited graphics capability) which make it economically and technically impractical for the mobile devices to operate a local browser functioning as if it was in a desktop computer, the present invention allows the mobile devices to interact effectively with the Internet and can be used with a wide variety of wireless communication networks (e.g., cellular digital packet data (CDPD) network, Global System for Mobile Communications (GSM) network, Code Division Multiple Access (CDMA) network and Time Division Multiple Access (TDMA) network).
According to one aspect of the present invention, a mobile device includes an interface engine that, via a client module, communicates and operates with a control engine in a link server device over a wireless network. The control engine, which utilizes the computing resources of the link server device, is responsible for tasks that require considerable computing power and memory, such as processing of URL requests, interpretation of markup language files, management of data cache and variable states. Further, working with a message processor in the server device, the control engine communicates with an interface engine using a compact data format that is efficiently transportable in the wireless data network. The interface engine typically performs tasks that do not require considerable computing power and memory, such as receiving input data from users, and the rendering of the compact data format received from the link server device, to cause the mobile device to display contents in the markup language files on a display screen.
According to another aspect of the present invention, incoming messages to the mobile device, including notification and requests, and which typically has one or more universal resource identifiers or locators, are processed in the link server device to generate compact messages. The link server device replaces universal resource locators in the incoming message with address identifiers, and manages an address table mapping each universal resource locator with an address identifier. Thus processed, the resulting compact messages demand less bandwidth of the wireless network, thus reducing high latency and requiring less air time.
According to still another aspect of the present invention, local service requests in the mobile device are processed simultaneously in the interface engine and the control engine. In the prior art, all local service requests are processed locally at the terminal where the local services are requested. The computing devices of the prior art, such as personal computers and workstations, can process local requests because of their computing power, memory and display capabilities. The mobile devices in the present invention, however, taking advantage of a cooperation between the interface engine and the control engine over the wireless network, services the requests with the limited computing resources of the mobile devices and without significantly compromising overall performance.
Thus, unlike the closed and proprietary prior art mobile devices (e.g., mobile phones and two-way pagers), the present invention allows thinly designed mobile devices to become open application platforms. Such an open application platform allows software developers to develop value-added applications and services to these thinly designed mobile devices. Consequently, many more new uses can be developed for two-w
Boyle Stephen S.
Fox Mark A.
Greer Russell S.
Laursen Andrew L.
Lentczner Mark G.
Blakely , Sokoloff, Taylor & Zafman LLP
Ferguson Keith
Openwave Systems Inc.
Trost William
LandOfFree
Method and architecture for interactive two-way... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and architecture for interactive two-way..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and architecture for interactive two-way... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2993947