Method and apparatus for switching an electronic system...

Electrical computers and digital processing systems: support – Computer power control – Power conservation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S300000, C713S310000, C713S322000, C713S323000, C713S330000, C713S340000, C713S601000, C714S030000, C714S051000, C307S125000

Reexamination Certificate

active

06282664

ABSTRACT:

BACKGROUND
1. Field of the Invention
The invention relates to a method and apparatus for control of an electronic system, in particular a mobile data recording and data display appliance, in which the electronic system has a processor, control software and at least one input/output unit with a control unit, in which the processor is connected with the control software and the control unit, and the control unit is connected with the control software and at least
1
input/output unit, and in which to initiate processing cycles, the processor receives an initial cycle signal via an initial oscillator cable.
2. Description of Related Art
Most current microprocessors and computers normally possess an energy saving device incorporated into the individual processor chip. This relates to hardware and relevant software components, using which the microprocessors or computer are switched during operation to differing operating modes with reduced energy consumption. One should mention particularly energy saving operating modes: reduction of oscillator frequency, sleep-mode, software standby-mode and hardware standby-mode. Energy saving forms of operation mentioned are not run by all microprocessors. The energy savings thereby achieved vary between approx. 10% and over 90% of the energy consumed by the computer in normal operating mode.
Many microprocessors incorporate automatic adjustment of the oscillator frequency, by which the microprocessor is controlled. If it is necessary for the microprocessor to develop full capacity, the oscillator frequency is 100% of the maximum oscillator frequency. If the requirement of the microprocessor is less, the oscillator frequency is reduced appropriately. But the energy consumption of the microprocessor is only reduced to a minor extent. However, the advantage of this form of operation is that it is possible to switch between forms of operation with differing oscillator frequencies, without having to restart the microprocessor. This prevents interruption of the running of application programmes using the microprocessor when switching to an energy saving mode.
What is known as the sleep-mode gives increased energy saving. This mode produces a reduction in energy consumption of approx. 30%. However, when switching to an energy saving mode, the sleep mode requires an execution break for each application programme running on the microprocessor at the time of switchover. If a computer is in “sleep-mode”, no processor capacity and no screen function is available. Normally this mode is terminated by pressing any key of the computer. After this key is pressed, the computer “reawakens”. If a switch is made to sleep-mode whilst an application programme is being run on the computer, the running of this application programme is continued after the key has been pressed by the user. In this way the programme sequence is continued at the point at which the programme run was previously interrupted.
A significantly increased saving of energy (>90%) is achieved with the “software-Standby” mode. Like the “Sleep-mode”, on switching to the software standby-mode the execution of all application programmes running is halted. During this time the computer is not available for a user. This applies in particular to the computer screen. Normally the content of some of the registers of the microprocessor and also some of the content of internal memories of the microprocessor are retained in the software standby-mode. In order to terminate the software standby-mode and after breaking off this mode to continue processing of application programmes at the point at which the programme was previously interrupted, additional software routines are necessary.
In a further energy saving mode the energy consumption of the microprocessor is reduced to virtually zero. This is the hardware-standby mode. Unlike the sleep-mode and software-standby mode, application programmes, whose run was interrupted by switching to the energy saving mode are not continued at the point at which they were interrupted. In the hardware-standby mode one loses in particular the content of the microprocessor registers. If the hardware-standby mode is to be terminated and running of application programmes using the computer is to be recommenced, a time consuming rebooting of the computer is necessary. If the content of the microprocessor registers was saved in external memories before the occurrence of the hardware-standby mode, one has to accept a noticeable delay time when continuing the interrupted application programmes.
Consequently it is the task of the present invention to create an improved facility for energy saving operation of a microprocessor or computer.
SUMMARY OF THE INVENTION
This task is solved by the technical exposition set out in the independent claims.
The significant advantage achieved with the invention compared with existing technology is that to save energy a large proportion of the electronic components of a mobile data recording and display device can be switched off without the user noticing it.
In particular, those electronic components which need to be available to recognise the commencement of data input continue to be available.
The invention can be implemented with very little additional hardware requirement. We can easily adapt it for different microprocessors or computers and it can be optimised for them.
In one advantageous version of the invention, a control unit, at least one input/output unit and the control software are operated by means of a cycle signal, which is created by an oscillator. In this way these parts of the electronic system can be operated independently of the processor.
In one useful version of the invention the control software is used to recognise the commencement of data input by means of at least one input/output unit (i/o unit) and this then triggers the processes necessary for capturing the data input before the input is terminated. The advantage is that this ensures that any data input is immediately perceived by the user of the data recording and display device and the data is captured in good time.
In another useful version of the invention, the control software produces an interruption signal, the processor is started by means of the interruption signal, the steps needed to capture the data input are initiated by the processor and the steps needed to capture the data are completed before the data input is terminated. This ensures that the processor “awakens” to capture and process the data to be input by the user.
There can be a useful provision for the electronic system to be switched back to the standby-mode after conclusion of the recording of data input, and in this way a switch is made again to an energy saving mode without time delay and there is optimum saving of energy.
One advantageous version of the invention provides for the processor to be switched off. This is a way of saving considerable energy.
A useful provision is for the control software to monitor the time when individual data input is commenced using several i/o units, and the individual data input is recorded in accordance with an appropriate weighting of the numerous i/o units, before the individual data inputs are terminated. This is useful if the individual time expended for recording the individual data inputs is different. By using the weighting it is possible to commence first of all with recording of the data input for which the greatest amount of time is required. In this way it is possible to ensure that all individual data inputs are captured before the data inputs are terminated.
In one advantageous version of the invention the individual weighting of the numerous i/o units is specified before switching to the standby mode. If one has numerous data inputs from numerous i/o units, it is possible to commence immediately with the capture of these data inputs. It is not necessary for any weighting between the numerous data inputs to occur beforehand. This would represent delay in commencing the data capture.


REFERENCES:
patent: 5384721 (1995-01-01), Joto
patent: 54

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for switching an electronic system... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for switching an electronic system..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for switching an electronic system... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2508626

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.