Abrading – Abrading process – Glass or stone abrading
Reexamination Certificate
1999-06-29
2001-03-27
Gerrity, Stephen F. (Department: 3723)
Abrading
Abrading process
Glass or stone abrading
C451S444000, C451S449000
Reexamination Certificate
active
06206760
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to a method and apparatus for preventing particle contamination in a polishing machine that utilizes slurry for material removal and more particularly, relates to a method and apparatus for preventing particle contamination in a chemical mechanical polishing apparatus wherein a plurality of bendable, shapeable conduits and spray nozzles or air atomizing nozzles are utilized to spray a cleaning solvent such as deionized (DI) water for removing slurry particles accumulated in the polishing apparatus such that any contamination of a wafer being polished in the apparatus can be avoided.
BACKGROUND OF THE INVENTION
Apparatus for polishing thin, flat semi-conductor wafers is well known in the art. Such apparatus normally includes a polishing head which carries a membrane for engaging and forcing a semi-conductor wafer against a wetted polishing surface, such as a polishing pad. Either the pad, or the polishing head is rotated and oscillates the wafer over the polishing surface. The polishing head is forced downwardly onto the polishing surface by a pressurized air system or, similar arrangement. The downward force pressing the polishing head against the polishing surface can be adjusted as desired. The polishing head is typically mounted on an elongated pivoting carrier arm, which can move the pressure head between several operative positions. In one operative position, the carrier arm positions a wafer mounted on the pressure head in contact with the polishing pad. In order to remove the wafer from contact with the polishing surface, the carrier arm is first pivoted upwardly to lift the pressure head and wafer from the polishing surface. The carrier arm is then pivoted laterally to move the pressure head and wafer carried by the pressure head to an auxiliary wafer processing station. The auxiliary processing station may include, for example, a station for cleaning the wafer and/or polishing head; a wafer unload station; or, a wafer load station.
More recently, chemical-mechanical polishing (CMP) apparatus has been employed in combination with a pneumatically actuated polishing head. CMP apparatus is used primarily for polishing the front face or device side of a semiconductor wafer during the fabrication of semiconductor devises on the wafer. A wafer is “planarized” or smoothed one or more times during a fabrication process in order for the top surface of the wafer to be as flat as possible. A wafer is polished by being placed on a carrier and pressed face down onto a polishing pad covered with a slurry of colloidal silica or alumina in de-ionized water.
A perspective view of a typical CMP apparatus is shown in FIG.
1
A. The CMP apparatus
10
consists of a controlled mini-environment
12
and a control panel section
14
. In the controlled mini-environment
12
, typically four spindles
16
,
18
,
20
, and
22
are provided (the fourth spindle
22
is not shown in
FIG. 1A
) which are mounted on a cross-head
24
. On the bottom of each spindle, for instance, under the spindle
16
, a polishing head
26
is mounted and rotated by a motor (not shown). A substrate such as a wafer is mounted on the polishing head
26
with the surface to be polished mounted in a face-down position (not shown). During a polishing operation, the polishing head
26
is moved longitudinally along the spindle
16
in a linear motion across the surface of a polishing pad
28
. As shown in
FIG. 1A
, the polishing pad
28
is mounted on a polishing disc
30
rotated by a motor (not shown) in a direction opposite to the rotational direction of the polishing head
26
.
Also shown in
FIG. 1A
is a conditioner arm
32
which is equipped with a rotating conditioner disc
34
. The conditioner arm
32
pivots on its base
36
for conditioning the polishing pad
38
for the in-situ conditioning of the pad during polishing. While three stations each equipped with a polishing pad
28
,
38
and
40
are shown, the fourth station is a head clean load/unload (HCLU) station utilized for the loading and unloading of wafers into and out of the polishing head. After a wafer is mounted into a polishing head in the fourth head cleaning load/unload station, the cross head
24
rotates 90° clockwise to move the wafer just loaded into a polishing position, i.e., over the polishing pad
28
. Simultaneously, a polished wafer mounted on spindle
20
is moved into the head clean load/unload station for unloading.
A cross-sectional view of a polishing station
42
is shown in
FIGS. 1B and 1C
. As shown in
FIG. 1B
, a rotating polishing head
26
which holds a wafer
44
is pressed onto an oppositely rotating polishing pad
28
mounted on a polishing disc
30
by adhesive means. The polishing pad
28
is pressed against the wafer surface
46
at a predetermined pressure. During polishing, a slurry
48
is dispensed in droplets onto the surface of the polishing pad
28
to effectuate the chemical mechanical removal of materials from the wafer surface
46
.
An enlarged cross-sectional representation of the polishing action which results from a combination of chemical and mechanical effects is shown in FIG.
1
C. The CMP method can be used to provide a planner surface on dielectric layers, on deep and shallow trenches that are filled with polysilicon or oxide, and on various metal films. A possible mechanism for the CMP process involves the formation of a chemically altered layer at the surface of the material being polished. The layer is mechanically removed from the underlying bulk material. An outer layer is than regrown on the surface while the process is repeated again. For instance, in metal polishing, a metal oxide layer can be formed and removed repeatedly.
During a CMP process, a large volume of a slurry composition is dispensed. The slurry composition and the pressure applied between the wafer surface and the polishing pad determine the rate of polishing or material removal from the wafer surface. The chemistry of the slurry composition plays an important role in the polishing rate of the CMP process. For instance, when polishing oxide films, the rate of removal is twice as fast in a slurry that has a pH of 11 than with a slurry that has a pH of 7. The hardness of the polishing particles contained in the slurry composition should be about the same as the hardness of the film to be removed to avoid damaging the film. A slurry composition typically consists of an abrasive component, i.e., hard particles and components that chemically react with the surface of the substrate. For instance, a typical oxide polishing slurry composition consists of a colloidal suspension of oxide particles with an average size of 30 nm suspended in an alkali solution at a pH larger than 10. A polishing rate of about 120 nm/min can be achieved by using this slurry composition. Other abrasive components such as ceria suspensions may also be used for glass polishing where large amounts of silicon oxide must be removed. Ceria suspensions act as both the mechanical and the chemical agent in the slurry for achieving high polishing rates, i.e., large than 500 nm/min. While ceria particles in the slurry composition remove silicon oxide at a higher rate than do silica, silica is still preferred because smoother surfaces can be produced. Other abrasive components, such as alumina (Al
3
O
2
) may also be used in the slurry composition.
A slurry composition is a material that easily accumulates after contacting dry air or without proper circulation of air. When slurry is left on the surface of the process environment, i.e., on the surface of the spindles or the conditioner arms in a CMP machine, it will dry and accumulate to become a source of particle contamination for the wafers that are processed in the polishing chamber. Slurry particles can easily fall from moving parts to the polishing pad due to mechanical vibration of the CMP apparatus to cause macro-scratch of the wafer surface. Slurry particles may also become source of particle contaminants for the wafer surface and for the chamber en
Chang Yu-Chia
Cheng Chung-I
Tseng Yung-Tai
Wu Jain-Li
Yang Chih-Chiang
Gerrity Stephen F.
McDonald Shantese
Taiwan Semiconductor Manufacturing Company , Ltd.
Tung & Associates
LandOfFree
Method and apparatus for preventing particle contamination... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for preventing particle contamination..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for preventing particle contamination... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2499810