Method and apparatus for measuring the characteristics of meat

Measuring and testing – Vibration – By mechanical waves

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06170335

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method and apparatus for measuring characteristics of meat, such as beef. More particularly, the invention uses quantitative analysis of an ultrasonic A scan signal to measure the following characteristics of meat: the percentage of intramuscular fat, the quality grade, the merit number, the depth of back fat, the depth of the rump fat, and body composition (also referred to as yield). Ultrasonic A scan signals are measured above the twelfth rib, above the thirteenth rib, between the twelfth and thirteenth ribs, and in the rump area of the animal (halfway between the hang bone and the pin bone). The invention can be used with either live or slaughtered animals.
2. Description of the Related Art
Traditionally, meat is visually inspected and graded after an animal has been slaughtered. With beef, for example, a cut is made between the 12th and 13th rib. A grader then visually inspects the exposed meat. Based on the appearance of this cross section, the grader classifies the meat according to predetermined standards that reflect the amount of intramuscular fat, or marbling, present in the meat. Typically, beef is classified according to U.S. Department of Agriculture (USDA) guidelines. Under USDA guidelines, meat can be classified as standard, select, choice or prime.
The visual inspection of meat has several disadvantages. First, the grading is subjectively based on the opinion of the grader. Different graders may assign different grades to the same piece of meat. Even the same grader might assign different grades to the same meat on different days. This is extremely important because the value of the meat is directly dependent on the grade it is assigned.
Visual grading of meat is also limited because the grader only has access to an area of the meat exposed at the cut. Generally, this grading is based solely on the quality of the meat at the cut between the 12th and 13th ribs. If that area does not accurately reflect the entire side of meat, the quality grade assigned to the meat will be incorrect.
Moreover, traditional techniques only provide information based on what is visually apparent to the grader. While the grader can visually estimate the marbling of the beef there is no way for him to determine the flavor and tenderness, or “merit,” of the meat. This is important because one out of four sides of beef classified as “prime” is still rejected as unsatisfactory by discriminating customers, such as restaurants specializing in beef steak.
The traditional method obviously cannot be used to grade the quality of live cattle. Knowing exactly when to slaughter cattle is important to maximize profits. Ranchers send herds of cattle to feed lots prior to processing. The feed lots attempt to create the highest quality meat at the lowest cost. Currently, feed lots must estimate when an entire group, or pen, of cattle has been sufficiently fed. A pen might contain 50, 100, or even 150 head of cattle. If the cattle have not been fed long enough the quality of the meat, and its value, suffers. On the other hand, if the cattle are fed too long the increase in the quality of the meat will not justify the extra expense of feeding the animals plus a reduced grade penalty. Because there is no way to determine the quality of live cattle, an owner can only estimate the point of maximum profitability for a particular animal. For example, feed lot operators generally hold all pens a fixed number of days selected to maximize profits. Even with this approach, however, about one third of the individual animals in any given pen are under-fed and one third are over-fed. It would be desirable to know the quality of each animal in the pen so every animal can be processed at the peak of its profitability.
Because the traditional technique can only be used on slaughtered animals, it is of limited use when attempting to breed a more profitable herd. If the cattle owner had instant feedback about the quality of the animals in the herd, higher quality animals could be selected for breeding. This would improve the genetic quality of the herd over time. Currently, the cattle owner must wait until an animal has left the feed lot and been slaughtered before any decisions about the genetic quality of the animal can be made.
The lack of rapid feedback also prevents a cattle owner from responding to changes in consumer preferences. If consumers begin to demand leaner meat, for example, the cattle owner cannot make decisions about a herd until each animal has left the feed lot and has been slaughtered. This process can take up to six months or more.
To overcome some of these limitations, ultrasound technology has been used for the last two decades in animal research and applications. Ultrasound scanning technology utilizes high frequency sound waves to collect information from live tissue in a non-invasive manner. Efforts in the ultrasonic measurement of meat have concentrated on the use of real-time “B” mode imaging. B mode ultrasound, often used in medical applications, provides the operator with a two dimensional picture of the tissue being inspected. Brightness and texture are used in the image to characterize the animal's muscle tissue. By studying the two-dimensional image, the operator can characterize the muscle tissue and quality grade the animal. This approach, however, suffers from the same limitation as the traditional method because it is still based on the subjective opinion of the operator. Additionally, operators must be highly trained to interpret the B mode images correctly.
There have been attempts to mechanize and computerize the use of B mode imaging. Obtaining accurate measurements of these tissue characteristics is difficult because of speckle noise present in the image. Moreover, B mode imaging equipment is extremely expensive and transducers used with B mode imaging quickly wear out when used on rough surfaces, such as the hide of an animal. Equipment used with B mode imaging is also very large and does not lend itself to use in the field. Finally, B mode imaging is not able to determine the flavor and tenderness, or “merit,” of the meat.
SUMMARY OF THE INVENTION
It is thus apparent from the above that there exists a significant need in the art for an improved method and apparatus for measuring characteristics of meat. Specifically, a more promising approach is disclosed to extract and identify features using the acoustic parameters of a back scattered ultrasound A scan signal. A quantitative analysis of the A scan signal provides definitive information about the characteristics of the meat.
It is therefore an object of this invention to provide a method and apparatus for measuring characteristics of meat using ultrasonic A scan signals.
It is another object of this invention to provide a method and apparatus for measuring the percentage of fat, the quality grade, the merit, the depth of back fat, the depth of the rump fat, and the body composition (yield).
It is another object of this invention to provide an inexpensive, real-time, durable and objective method and apparatus for measuring characteristics of meat.
It is another object of this invention to provide a method and apparatus for measuring characteristics of meat in both live and slaughtered animals.
It is another object of the invention to provide an apparatus for measuring the characteristics of meat in animals which is durable and small in size, preferably hand-held.
It is another object of the invention to provide a method and apparatus for measuring the characteristics of meat which gives the user an instantaneous indication of the quality of a live animal, so that feeding routines may be adjusted accordingly.
Briefly described, these and other objects of the invention are accomplished by providing a method of measuring characteristics of meat. An ultrasonic A scan transducer is positioned on the animal to be measured and an A scan signal is transmitted into the meat. The return signal is measured and used to calculate characteristics of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for measuring the characteristics of meat does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for measuring the characteristics of meat, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for measuring the characteristics of meat will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2460423

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.