Method and apparatus for measurement-based conformance...

Multiplex communications – Data flow congestion prevention or control – Control of data admission to the network

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S400000, C709S227000

Reexamination Certificate

active

06363053

ABSTRACT:

FIELD OF INVENTION
This invention relates to communications networks. More specifically, it relates to a method and apparatus for testing conformance to service level agreements in networks.
BACKGROUND OF THE INVENTION
The Internet, a packet-switched network, currently operates substantially as a best effort network, providing a single class of service. In a single class of service network, packets transmitted between a source and destination are each treated as having equal priority. Network entities typically make no distinction between packets and thus all packets are of the same priority and subject to the same delivery latencies and delays. Therefore, there are few specified parameters and few guarantees that Internet traffic will be delivered to the target device. While this is probably an acceptable model for data communication, it may not be suitable to support multimedia applications. Multimedia applications have different needs than those required for data communication. While a main factor for data communication is throughput, the main factor for effective operation of multimedia applications is usually delay.
Therefore, next-generation remote access servers will likely need to explicitly support multiple classes of service (i.e., differentiated services) to provide support for multimedia applications and other real-time applications, such as Voice-over-IP, in which voice signals are digitized and packetized for transmission across an IP network. Differentiated services will likely operate on a packet-by-packet basis, and may include options to differentiate packet forwarding and routing based on pre-defined parameters, such as those relating to throughput, delay, jitter, and loss. The parameters will likely be administratively initiated and enforced on either a per-user or per-traffic-type basis.
One prior art method that has been used to implement a differentiated services scheme is to stamp each packet to establish the class of service to which the stamped packet belongs. The stamping of a packet may occur in many places in the network, such as the user's workstation, a first-hop router, a gateway, or a remote access server, for example.
Under the trend towards the use and support of differentiated services in packet-switched networks, some traffic streams are given higher priority than others at switches and routers, based on a service level agreement (SLA) between the sender of the stream and a network administrative entity (NAE), which may be an Internet service provider, for example. Currently, priority mechanisms are supported or proposed by Frame Relay, ATM, Token Ring, Ethernet, and Internet Protocol (IP) networks. The implementation of differentiated services allows for improved quality of service (QoS) to be realized in higher priority traffic. Quality of Service is discussed in
Quality of Service: Delivering QoS on the Internet and in Corporate Networks
by P. Ferguson and G. Huston, John Wiley & Sons, New York, 1998.
An SLA is an agreement between a user and a service provider that defines the nature of the service to be provided and the responsibilities of both parties. It is important for users to have responsibilities in a differentiated services scheme, otherwise all users may attempt to transmit all traffic at a high priority level, which would obliterate the benefits derived from having the scheme. To reduce the chance of all users trying to send traffic at a high priority level, a pricing or capacity allocation scheme will likely form the basis of these agreements. These schemes may be based on flat-rate, per-time, per-service, or per-usage charging, or some other method. Thus, a sender who requires a particular QoS will be able to procure an SLA with an NAE to provide a mapping to an appropriate discrete service level. The contract is likely to take on the following form: The sender agrees to transmit traffic within a particular set of parameters, such as mean bit-rate, maximum burst size, etc., and the NAE agrees to provide the requested QoS to the sender, as long as the sender's traffic remains within the parameters.
An SLA for a non-differentiated services scheme may denote a QoS characteristic that will be provided to the user, such as a throughput specification that will be provided across a virtual leased line, or maximum delay or packet loss specification that will be provided over an IP network.
As an example, a network user may have an SLA with an ISP (an NAE) specifying that the ISP will mark all of the user's packets with a particular per hop behavior. The per hop behavior could be based on the type of traffic generated, such as a per hop behavior stamp providing low delay for remote login applications or a providing high throughput for file transfers, for example. Given the per hop behavior, each router between the user and the destination (the traffic sink) will handle the user's packets in the particular proscribed manner. For example, a packet marked for low latency might be served before a packet marked for high throughput.
These QoS schemes may be an improvement over current best effort networks, however, at least two problems arise. First, an NAE may not be able to guarantee the QoS specified in the SLA. In particular, it is difficult to guarantee capacity to individual traffic flows in IP networks, even with a priority scheme in place, because the NAE may not be able to control the number of users connected at any particular time, and therefore cannot control the users cumulative demands on bandwidth. Secondly, the Internet consists of many independent NAEs. It is currently not possible for a single NAE to provide end-to-end QoS if the sender's traffic is traveling across multiple NAEs because a single NAE typically only has control over a small portion of the entire end-to-end network path.
Therefore, a QoS scheme may include contractual obligations between peer NAEs in addition to the obligations between senders and NAEs. Contractual obligations between peer NAEs are contained in an Inter-Provider SLA (IPS). Since each NAE may have several peer NAEs, it may be desirable to have several IPSs, wherein each IPS contains contractual obligations between adjacent NAEs. Alternative IPS arrangements are also possible, such as several NAEs agreeing to abide by the terms of a single SLA.
Once a differential QoS scheme is implemented among the NAEs, a user may select a class of service that supports an application. However, the user may not know which class of service satisfies the QoS demands of the application. If the user overcompensates by selecting a higher priority class of service, the user may incur unnecessary costs. Additionally, the user may not even know if the QoS contractual obligations regarding the different classes of services are being complied with by the NAEs.
In order for the QoS contractual obligations underlying SLAs and IPSs to be useful, they must be enforceable. To be enforceable, it must be determined whether the contractual obligations are being complied with. Needed is a method and/or apparatus to measure compliance of an NAE to an IPS or SLA.
Also needed is a method and/or apparatus to allow a user to measure the QoS for different classes of service. If a user has knowledge regarding the QoS characteristics for each class of service, the user may then select the least costly service level satisfying the QoS requirements for a particular application.
SUMMARY OF THE INVENTION
In view of the above, a method for conformance testing of service level agreements in networks is provided. The method comprises the steps of collecting quality of service information from network traffic over a plurality of network nodes, comparing the collected quality of service information to a plurality of specified quality of service levels, and providing a plurality of possible virtual quality of service pathways through a plurality of network nodes based on the compared quality of service information.
One embodiment of the method includes the additional step of creating a virtual connection using the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for measurement-based conformance... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for measurement-based conformance..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for measurement-based conformance... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2851315

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.