Photoelectrochemical device containing a quantum confined...

Chemistry: electrical and wave energy – Processes and products – Processes of treating materials by wave energy

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S157400, C204S157520, C204S157500, C204S157600

Reexamination Certificate

active

06361660

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the photocatalytic decomposition of molecules. In particular, the present invention relates to the decomposition reaction of water into hydrogen and oxygen, and the electrochemical reduction and/or oxidation reaction of a compound. The particular reaction involving a silicon or germanium nanoparticle exhibiting quantum size effects, as a light harvesting semiconductor in direct contact with a suitable catalyst.
BACKGROUND OF THE INVENTION
The requirement of supplying electrical energy to drive electrochemical reactions often makes such reactions cost prohibitive. For this reason, the use of solar energy to power electrochemical reactions has long been contemplated. The electrochemical reactions most often so considered include the decomposition of water into the gases hydrogen and oxygen, and the degradation of organic contaminants from an effluent stream.
The conversion of sunlight and water into a clean, high efficiency chemical fuel has been a goal for a number of years and the urgency increases as damaging effects of burning fossil fuels becomes ever more apparent. Photolysis of water to yield hydrogen and oxygen has been widely demonstrated under visible light illumination of Group II-sulfides and selenides (i.e. CdS, CdSe, ZnS, etc.), and under ultraviolet light illumination of TiO
2
, BaTiO
3
, ZnO, etc. These semiconductors are typically loaded with metal and or metal oxide catalysts to promote the transfer of electrons and holes, respectively to the reactant-device interface.
The use of solar energy to decompose contaminants such as organics, inorganic salts and microbes allows for remediation to effectively cope with seepage of pollutants into an environment. The photocatalyzed decomposition of organic contaminants is well known to the art (K. Rajeshwar, J. of Applied Electrochemistry 25, 1067(1995)). A variety of halocarbons react under exposure to ultraviolet light in the presence of TiO
2
to give less noxious byproducts (C-Y. Hsiao, J. of Catalysis 82, 412 (1983)). Other transition metal oxides and Group II-VI semiconductors have also been utilized to degrade environmental contaminants.
In general, current photocatalytic systems suffer from low reaction rates. Reaction-induced changes in pH, donor concentrations and surface trap sites are at least partly responsible for the low reaction rates observed. In the case of some of the Group II-VI semiconductors, the exposure to light and the presence of oxygen digests the semiconductor domain. For example, while CdS has favorable light absorption properties, under aqueous reaction conditions it is converted to the water soluble compound CdSO
4
, thereby consuming the semiconductor in the course of reaction. Reaction rates suffer further from harvesting only those incident photons which are greater than the band gap absorption of the semiconductor. Thus, it is an object of the present invention to provide a semiconductor that has a tunable band gap such that harnessable light energy is collected efficiently in the course of photochemical reaction and with minimal changes in efficiency with operation.
Platinized n-type bulk silicon has proven to be an inefficient photocatalyst for hydrogen generation from organic molecules. The band gap of silicon was identified as being less than the theoretical decomposition voltage of the half-cell reactions (H. Yoneyama, N. Matsumoto and H. Tamura, Bull. Chem. Soc. Jpn. 59, 3302 (1986)). Thus, it is a further object of the present invention to provide a semiconductor with a more favorable band gap for photocatalytic decomposition reactions than that of bulk silicon.
The stability of silicon oxides, the tunable control of energy gap and charge carrier characteristics affords heretofore unobtainable photolysis rates over time for catalyzed, quantum confined semiconductor particles towards water and various aqueous pollutants.
SUMMARY OF THE INVENTION
A process is disclosed for a chemical reaction of a molecule using a quantum confined Group IV semiconductor domain to absorb photons of equal or greater energy than the band gap of the semiconductor nanoparticle domain. The photon absorption by the semiconductor nanoparticle domain is of sufficient energy to induce the chemical reaction. The absorbed photons are transferred to the molecule by way of at least one catalytic material bonded to the semiconductor nanoparticle domain.
A photoelectrochemical device is also disclosed having a quantum confined semiconductor nanoparticle domain, and at least one catalytic material attached thereto. The semiconductor nanoparticle domain has a band gap greater than the bulk semiconductor and is suitable for driving a desired reaction.


REFERENCES:
patent: 4466869 (1984-08-01), Ayers
patent: 4650554 (1987-03-01), Gordon
patent: 4889604 (1989-12-01), Khan et al.
patent: 4966759 (1990-10-01), Robertson et al.
patent: 5262023 (1993-11-01), Sayama
patent: 5767018 (1998-06-01), Bell
patent: 5790934 (1998-08-01), Say et al.
patent: 5850064 (1998-12-01), Goldstein
Yoneyama et al., Photocatalytic Decomposition of Formic Acid on Platinized n-Type Silicon Powder in Aqueous Solution, Bull. Chem. Soc. Jpn., 59,3302-3304 (1986) no month available.
Kuehne et al., The Electronic Band character of Ru Dichalcogenides and its Significance for the Photelectrolysis of Water, Chem. Phys. Lett., 112(2), 160-162 (1984) no month available.
Rufus et al., Cadmium Sulfide with Iridium Sulfide and Platinum Sulfide Deposits as a Photocatalyst for the Decomposition of Aqueous Sulfide, J. of Photochemistry and Photobiology A: Chemistry 91-63-65 (1995) no month available.
Rajeshwar, K.I., Photelectrochemistry and the Environment, J. of Appl. Electrochemistry 25, 1067-1082 (1995) no month available.
Igumenova, T.I.; Parmon, V.N.; Photostimulated Vectorial Electron Transfer across the Bilayer Membrane of Lipid Vesicles in a System with CdS Nanoparticles as Photosensistizer and 1,4-bis (1,2,6-triphenyl-4prydiyl) benzene as a Reversible Two-electron Carrier, J. of Photochemistry and Photobiology A: Chemistry 90, 159-166 (1995) no month available.
Matsumura et al., Photocatalytic and Photoelectrochemical Reactions of Aqueous Solutions of Formic Acid, and Methanol on Platinized CdS Powder and at a CdS Electrode, J. Phys. Chem., 88, 248-250 (1988) no month available.
Harbour et al. Effect of Platinization of the Photoproperties of CdS Pigments in Dispersion, J. Phys., Chem., 85, 4026-4029 (1981) no month available.
Matthews, R.W., An Adsorption Water Purifier within Situ Photocatalytic Regeneration, J. of Catalysis, 113, 549-555 (1988) no month available.
Henglein, A., Photochemistry of Colloidal Cadmium Sulfide. 2 Effects of Adsorbed Methy Viologen. . . , J. Phys. Chem., 86, 2291-2293 (1982) no month available.
Matsumoto et al., Photoinduced Reactions of Viologens on Size-Separated CdS Nanocrystals, J. Phys. Chem., 98, 11549-11556 (1994) no month available.
Malinka et al., Hydrogen production from water by visible light using zinc porphyrin-sensitized platinized titanium dioxide, J. of Photochemistry and Photobiology A: Chemistry 90, 153-158 (1995) no month available.
Lu, G. and Li, S., Effects on surface etching on the structure and performance of Rh203/CdS catalyst, J. of Photochemistry and Photobiology A: Chemistry 97, 65-72 (1996) no month available.
Yoneyama et al., “Photocatalytic Decomposition of Formic Acid on Platinized n-Type Silicon Powder in Aqueous Solution”, Bull. Chem. Soc. Jpn., vol. 59, pp. 3302-3304, (no month available) 1986.*
Thewissen et al., “Photoelectrocatalytic Reactions Over Aqueous Suspensions of Silicon Carbide Powders”, Nouv. J. Chim., vol. 7, No. 2, pp. 73-77, (no month available) 1983. Abstract only.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photoelectrochemical device containing a quantum confined... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photoelectrochemical device containing a quantum confined..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photoelectrochemical device containing a quantum confined... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2851314

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.