Electrical computers and digital data processing systems: input/ – Input/output data processing – Peripheral configuration
Reexamination Certificate
1999-03-04
2002-07-30
Gaffin, Jeffrey (Department: 2182)
Electrical computers and digital data processing systems: input/
Input/output data processing
Peripheral configuration
C710S062000, C710S072000, C710S104000, C713S001000, C713S100000
Reexamination Certificate
active
06427176
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the field of system maintenance, and in particular, to physical labeling of a system after a field service/upgrade.
2. Background Information
In electronic systems, such as the typical desktop personal computer systems, it is known to store certain basic system information in non-volatile memory which is commonly referred to as SRAM (static random access memory) or CMOS, because it is generally memory formed with complimentary metal oxide semiconductor technology. Of course, this type of memory is only “non-volatile” as long as a voltage is applied to it, either from the computer system power supply or from an on-board battery when the computer system is powered down. The information stored in CMOS includes hardware information, for example, system memory size, hard disk drive type and other peripheral device information. This information is sometimes manually entered by the computer manufacturer at the time the system is configured, or by a user when the system is upgraded by adding a new component. The information stored in CMOS memory is used by the computer's basic input output system (BIOS), which is a set of routines generally stored as firmware in read only memory (ROM) disposed on the computer system mother board, to establish parameters for communication between the computer system hardware, including peripheral devices, and the operating system software. Some BIOS versions have an automatic detect feature to detect a device's parameters. For example, when a new hard drive is added to the system, the user can manually configure the required parameters to be stored in CMOS memory, or the user can have the BIOS automatically detect the drive type, number of cylinders, heads, etc., of the new hard drive, for storage in CMOS. Further, some recent computer systems use what is called a “plug-and-play” (PnP) BIOS, in which the BIOS automatically detects the installation of a new device having PnP compatibility, and attempts to configure necessary input/output drivers and parameters for the device. However, in this known method, the BIOS and operating system only know the device by its logical address, and not its actual physical location. That is, it is not readily apparent to the user or service personnel from the BIOS or operating system, to which card slot on the mother board a device is physically connected. In small desktop computer systems this is not generally a concern since the number of peripherals such systems can accommodate is usually relatively small making their location relatively easy.
Typical medium to large size computer systems include at least one backplane, which is essentially a connecting board having integrated wiring and bus slots or other connectors, for interconnecting various computer system circuits designed to connect to the backplane. The backplanes connect circuits such as special purpose input-output and/or control circuits, for use in interfacing peripheral devices, for example, such as direct access storage devices (DASD's, e.g., hard disk drives), to the rest of the computer system. These circuits are generally disposed on modules or cards which have standard connectors for plug-in to backplane at bus sockets or slots, to thereby connect with the rest of the computer system by way of the backplane. This allows for easy removal, servicing, upgrading and replacement by service personnel and/or experienced users.
In large and complex electrical systems, such as large computer systems, there is a need for the operating system (OS) to be able to correlate a physical location, or ‘bay’, within a computer chassis with a device or subsystem at that location. This correlation is needed in order to be able to readily service or upgrade the system.
If a peripheral device, for example a DASD, is operating at a substandard level, the computer operating system should detect and indicate such to a user of the system to alert service personnel. In the case of a failed hard drive, the system might report “error reading drive X” (where “X” is the logical drive name) on the display console of the system, for example. In small desk-top computer systems, when such an error is reported, it is generally relatively easy for service personnel to locate the hard drive in question, and the related interface card device, since there is only one enclosure and typically only one or two hard drives provided.
With larger and more complex computer systems, such as servers for small and large office environments, typically more peripheral devices, hard drives, and associated backplanes and interface cards are used, and they may be disposed in separate chassis enclosures, also called “frames” or “towers,” and “drawers” (self-contained entities which can be slid in and out of a chassis enclosure as a unit) forming an interconnected multi-tower system. In such systems, locating a device in need of servicing may be more difficult and/or time consuming, unless the operating system can indicate the location of the device in question by tower, backplane, and card-slot, for example. One computer system that is sometimes configured as a multi-tower computer system is the IBM AS/400 (IBM and AS/400 are trademarks of International Business Machines Corporation, all rights are reserved). The towers of this computer system in its multi-tower configuration are interconnected by at least one host system bus. However, even in a single tower system there may be a significant number of backplanes, each with a number of slots, making physically locating a particular “logical” device difficult and/or time consuming without first establishing a logical to physical location correlation.
The correlation for service has been accomplished in the past using a combination of a physical label at the ‘bay’ location within the computer enclosure which service personnel can refer to, and some ‘boot-code’ within the operation system. The ‘boot-code’ is generally loaded at the time of system manufacture and contains information about how the chassis was built, i.e., configured, at the time of manufacture.
However, a problem with this method is that changes to subsystem structures in the field are not reliable. The maintenance personnel adding/subtracting or changing chassis configuration in the field are relied on to input the newly affixed labeling information and structure into the operating system.
Typically, reconfiguration of a computer primarily consists of replacing hardware devices, such as DASD's (direct access storage devices—hard disk drives) or PCI (peripheral component interconnect) cards. In some cases, subsystems are also replaced during a system upgrade. For instance, a processor and memory ‘cartridge’ might be upgraded with a faster processor and more memory. However, additional information on how the physical box labeling layout might change as a result was often neglected.
At the present time, some manufacturers are conducting an initiative to ‘standardize’ the physical ‘outside’ dimensions of server boxes. For example, INTEL has an initiative called SHV for Standard High Volume servers. With standardization of the box volume, there comes a need to be able to re-label the enclosure components during a subsystem upgrade. Upgrading is desirable at the ‘Server’ box level, since these boxes are usually very expensive and, for inventory and other reasons, many users have a desire to maintain the Serial Number of the overall chassis while replacing the ‘guts’ of the machine to obtain better performance.
A system power control network (SPCN) is known from U.S. Pat. No. 5,117,430 and copending application Ser. No. 08/912,561, filed Aug. 18,1997, entitled “FAIL-SAFE COMMUNICATIONS NETWORK FOR USE IN SYSTEM POWER CONTROL” attorney docket number RO997-083-IBM-101. The SPCN communications network is a low volume serial network used to monitor power conditions at a plurality of nodes in a computer system, in particular, the IBM AS/400 (IBM and AS/400 are registered trademarks of International Busines
Berglund Neil Clair
Goolsbey Michael Alfred
Osten Thomas James
Bussan Matthew J.
Gaffin Jeffrey
International Business Machines - Corporation
Lynt Christopher H.
Rijue Mai
LandOfFree
Method and apparatus for maintaining system labeling based... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for maintaining system labeling based..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for maintaining system labeling based... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2867884