Method and apparatus for in-situ measurement of workpiece...

Abrading – Abrading process – Glass or stone abrading

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S005000, C451S006000, C451S008000, C451S009000, C451S060000, C451S287000

Reexamination Certificate

active

06273792

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to chemical mechanical polishing. More particularly, the present invention relates to methods and apparatus for in-situ measurement of workpiece displacement during chemical mechanical polishing of a surface of the workpiece.
BACKGROUND OF THE INVENTION
Chemical mechanical polishing (CMP) is often used to remove material from a surface of a workpiece to provide a relatively smooth, flat surface on the workpiece. For example, CMP may be used in the formation of semiconductor devices and magnetic hard disks to provide a smooth, flat surface for subsequent processing of the devices or disks.
Material on a workpiece surface is removed using CMP by placing the workpiece surface in contact with a polishing surface and moving the workpiece and the polishing surface relative to each other. A slurry, including abrasive particles and/or chemicals that react with the material on the workpiece surface to dissolve the material, may also be placed in contact with the workpiece surface to assist removing a portion of the material.
During CMP processing, it is often desirable to remove a predetermined amount of material from the surface of the workpiece or leave a predetermined amount of material on the surface of the workpiece by removing excess material. Device or disk performance may vary in accordance with the thickness of a particular layer remaining on the surface of the workpiece. Thus, it is often desirable to mitigate variation of material removal or remaining material thickness across the workpiece surface to increase yield and/or performance of devices or disks, such that the remaining film thickness is near an optimal value across the surface of the workpiece.
Variation of material removal across a workpiece surface may be a function of several parameters or factors. For example, variation of material removal may be a function of, among other things, relative movement (e.g., direction and speed) between the workpiece and the polishing material, amount of slurry present at the workpiece surface, type of polishing material, material to be removed from the workpiece surface, tilt of a workpiece with respect to the polishing surface, pressure applied between the workpiece and the polishing surface, compression of the polishing material, and the number of workpieces cumulatively polished on a polishing material surface.
CMP modeling may be used to predict how various process parameters affect the variation of material removed across the workpiece surface. Modeling predictions may then be used to select polishing parameters to reduce variation of material removed across the surface of the workpiece, increase workpiece material removal rate, or a combination thereof. In addition, CMP modeling parameters may be used to predict how new materials (e.g., workpiece material, slurry material, polishing material, or any combination thereof) will affect material removal rates and variation of material removed from the workpiece surface.
Unfortunately, effects of various polishing parameters on workpiece material removal variation are not well understood, in part, because measurements of factors that affect material removal variation are difficult to obtain. For example, it is difficult to measure pad compression, wafer tilt, and other factors that affect material removal variation while polishing the workpiece.
An example of a CMP machine configured to measure effects of polishing parameters and use the measured effects to control a polishing process is disclosed in U.S. Pat. No. 5,868,896, issued to Robinson et al., on Feb. 9, 1999. The machine disclosed in the '896 patent includes a pressure sensor interposed between a workpiece and a carrier configured to guide the workpiece across a polishing surface. The pressure sensor generates a signal corresponding to the contour of the workpiece surface in contact with the polishing surface. The signal from the pressure senor is coupled to a controller, which in turn is coupled to an actuator on the carrier. To reduce variation in an amount of material removed from a wafer surface, the actuator increases or decreases pressure applied to portions of the wafer in response to the sensed pressure.
Although the CMP apparatus disclosed in the '896 patent discloses apparatus to measure pressure and adjust carrier force in response to the measured pressure, the apparatus does not provide for a mechanism to measure process parameters such as pad compression and wafer displacement. Accordingly, improved method and apparatus for measuring effects of various CMP polishing parameters are desired.
SUMMARY OF THE INVENTION
The present invention provides an improved method and apparatus for measuring chemical mechanical polishing (CMP) process characteristics that may affect polishing removal rate and removal rate variation across a surface of a workpiece. More particularly, the present invention provides a device for in-situ measurement of a distance between a surface of a workpiece and a fixed point on the CMP apparatus. The distance measurement may be used to correlate pad compression, wafer lift, wafer tilt, amount of slurry or other fluid(s) between the workpiece and a polishing surface, rate of polishing material removal during polishing material conditioning, or a combination of these factors to polishing removal rates and removal rate variation across the surface of the workpiece.
The way in which the present invention addresses the drawbacks of the now-known CMP machines is addressed in greater detail hereinbelow. However, in general, the improved machine includes a device to measure distance between a reference point and a workpiece surface during CMP. The distance measurement may facilitate an understanding of the CMP process and modeling of the process. In addition, polishing material compression and wear may be determined by measuring the distance between the workpiece and the polishing material. Effects of pad compression may then be correlated to workpiece material removal rate and removal rate variability.
In accordance with an exemplary embodiment of the present invention, a laser displacement sensor is mounted to a CMP machine. The sensor is configured to measure a distance between the sensor and a surface of the workpiece. In accordance with one aspect of this embodiment, apertures are formed within a polishing material and a platen attached to the polishing material. Light from the sensor is illuminated in a direction through the apertures, toward the workpiece, and reflected from the workpiece surface to the sensor. In accordance with an exemplary aspect of this embodiment, confocal measuring techniques are used to measure the distance between the sensor and the workpiece.


REFERENCES:
patent: 5433651 (1995-07-01), Lustig et al.
patent: 5486129 (1996-01-01), Sandhu
patent: 5609511 (1997-03-01), Moriyama et al.
patent: 5899792 (1999-05-01), Yagi
patent: 5936733 (1999-08-01), Sandhu et al.
patent: 6106662 (2000-08-01), Bibby, Jr. et al.
patent: 0 824 995 A1 (1998-02-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for in-situ measurement of workpiece... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for in-situ measurement of workpiece..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for in-situ measurement of workpiece... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2502546

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.