Method and apparatus for fault analysis in a communication...

Error detection/correction and fault detection/recovery – Data processing system error or fault handling – Reliability and availability

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S014010

Reexamination Certificate

active

06675325

ABSTRACT:

BACKGROUND OF THE PRESENT INVENTION
The present invention relates to the analysis of fault information generated by circuit switch components and/or packet switch components.
Today, many businesses rely on a high volume of completed telephone calls to generate sales or revenue. When telephone service is interrupted, business is lost. In a circuit switch telephone network, large numbers of calls are connected every day through computerized switches as are known in the art. Occasionally, errors occur in making this connection. When these errors do occur, error messages are generated typically by the circuit switch components themselves, and sent to a common location for example, an error collection computer such as the NetMinder® System utilizing Network Trouble Patterning (NTP) manufactured by Lucent Technologies. Typically, the error collection computers collect and correlate error messages generated by the circuit switch components during call setup. This data is used to deduce the status of wireline, wireless, and Signaling System 7 (SS7) networks through extensive statistical and patterning analysis. This analysis process automatically determines network trouble patterns and produces near real time alerts. The NetMinder® system, for example, provides surveillance capability at the network architecture level and allows for a comprehensive view of services across multiple network elements.
Unfortunately, the error messages contain only information available to the circuit switch components. As illustrated in
FIG. 1
, typically these error messages
4
, defined by the SS7 protocol, include the telephone number from which the call originates or “calling number”
6
, and the desired telephone number which the calling party wishes to reach or “called number”
8
. Notably absent in the SS7 message is an indication of additional identifying information about the customer affected by the error, such as a corporate name. In the recent past, the lack of customer identifier data in the error messages
4
caused few problems because telephone customers typically had few telephone numbers often having similar attributes. However, the lack of identifying data has become increasingly problematic when a customer has many different telephone numbers, because the error collection computer's analysis is typically focused on dialed telephone numbers. As an extreme example, if every telephone number of a company fails once, thousands of telephone calls may be lost. Yet, the error collection computer may fail to appreciate the loss, and alert repair personnel, because one lost call to one telephone number may not be sufficient to trigger alerts.
Accordingly, it would be desirable for the error collection computer to associate additional customer identifier information with the error messages generated and analyzed. This would allow technicians to focus their repair activities on customers that depend most heavily on uninterrupted telephone service.
In conventional circuit switch telephone networks, a database presently exists containing, among other items, associations of customer identifiers and a plurality of assigned telephone numbers. For example, a large catalogue company may have several thousand “800 numbers” across the country which are different. These numbers can all be associated with one common customer identifier and receive the same processing treatment and billing. Usually, details about these businesses including their names, billing information, and the plurality of telephone numbers are maintained in a Switch Control Point (SCP) within the network. Because the data in the SCP is maintained both to provide functionality and for billing purposes, the information is generally accurate. Various manufacturers commercially produce SCP's which are capable of converting the thousands of numbers dialed to a specific customer ID. Typically, SCP's are physically separate, perhaps by large distances, from other components in the network such as switches and error collection computers. All calls to a specific customer ID then receive, for example, the same recorded announcements, the same recorded message prompts for digit options, final routing to a common bank of telephones or operator stations, and the like.
Currently, additional information may be transferred from the SCP to the Error Collection Computer (ECC) by changing the processing logic in each of the Switch Components. For example the SCP can send additional customer feature information by extending the SS7 message over the network links; and each unique Switch Component can be changed to pass this additional information over the unique error message links to the Error Collection Computer. In this situation, the SCP, ECC and many Switch Components would need to have new message processing logic installed. Often there are several SCPs in a network and many Switch Components from various manufacturing companies. For the Service Provider Company, this can be time consuming, difficult to coordinate, has a potential of being changed incorrectly and can be a very costly change.
A multi-media communication network using packet switch componentry can also adhere to the SS7 protocol and employ an error collection computer and an SCP. Unfortunately, such a packet switch network suffers from the drawbacks outlined above.
The present invention contemplates a new and improved method and apparatus for fault or error analysis in a multi-media communication network which overcomes the above-referenced problem and others.
BRIEF SUMMARY OF THE INVENTION
The above problems are alleviated and an advance is made over the prior art in accordance with the teachings of Applicant's invention wherein, a communication network includes a customer database storing customer information. The network further includes an error collection computer which receives and analyzes error messages relating to the network and an interconnecting datalink provides data communication between the customer database and the error collection computer.
In accordance with another aspect of the present invention, the communication network further includes a switch component which provides error messages to the error collection computer when errors are encountered.
In accordance with another aspect of the present invention, the switch component includes a circuit switch component and/or a packet switch component.
In accordance with another aspect of the present invention, the error message includes at least one of a calling number or a called number.
In accordance with another aspect of the present invention, the error collection computer selects a customer identifier based on matching at least one of the calling number or called number from the error message with the telephone number from the customer database. The network further includes an output device which outputs error information including the selected customer identifier.
In accordance with another aspect of the present invention, the switch component communicates with the error collection computer according to a first protocol, and the customer database communicates with the error collection computer over the interconnecting datalink according to a second protocol.
In accordance with another embodiment of the present invention, a method of recognizing impaired customer performance in a multi-media network includes receiving an error message generated in response to an error, an receiving customer information from a customer database. From these a customer identifier is determined.
In accordance with another aspect of the present invention, a method further includes outputting error data including the customer identifier.
In accordance with another aspect of the present invention, where the error message includes at least one of a calling number or a called number the receiving customer information step includes responsive to receipt of the error message, requesting customer information including a customer identifier associated with at least one of the calling number or called number.
In accordance wi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for fault analysis in a communication... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for fault analysis in a communication..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for fault analysis in a communication... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3227688

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.