Chemistry: molecular biology and microbiology – Vector – per se
Reexamination Certificate
2000-11-13
2002-10-22
Caputa, Anthony C. (Department: 1642)
Chemistry: molecular biology and microbiology
Vector, per se
C435S226000, C435S325000, C435S455000, C536S023100, C536S023500, C536S024310, C536S024330
Reexamination Certificate
active
06468790
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
This invention relates to methods for predicting the behavior of tumors. More particularly, the invention relates to methods in which a tumor sample is examined for expression of a specified gene sequence thereby to indicate propensity for metastatic spread.
BACKGROUND OF THE INVENTION
Breast cancer is one of the most common malignant diseases in women, with about 1,000,000 new cases per year worldwide. Colon cancer is another of the most common cancers. Despite use of a number of histochemical, genetic, and immunological markers, clinicians still have a difficult time predicting which tumors will metastasize to other organs. Some patients are in need of adjuvant therapy to prevent recurrence and metastasis and others are not. However, distinguishing between these subpopulations of patients is not straightforward, and course of treatment is not easily charted. There is a need in the art for new markers for distinguishing between tumors which will or have metastasized and those which are less likely to metastasize
SUMMARY OF THE INVENTION
It is an object of the present invention to provide markers for distinguishing between tumors which will or have metastasized and those which are less likely to metastasize. These and other objects of the invention are provided by one or more of the embodiments described below.
One embodiment of the invention provides an isolated and purified human protein having an amino acid sequence which is at least 85% identical to an amino acid sequence encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:1-63 or the complement thereof.
Another embodiment of the invention provides a fusion protein which comprises a first protein segment and a second protein segment fused to each other by means of a peptide bond. The first protein segment consists of at least six contiguous amino acids selected from an amino acid sequence encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:1-63 or the complement thereof.
Yet another embodiment of the invention provides an isolated and purified polypeptide consisting of at least six contiguous amino acids of a human protein having an amino acid sequence encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:1-63 or the complement thereof.
Still another embodiment of the invention provides a preparation of antibodies which specifically bind to a human protein which comprises an amino acid sequence encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:1-63 or the complement thereof.
Even another embodiment of the invention provides an isolated and purified subgenomic polynucleotide comprising at least 11 contiguous nucleotides of a nucleotide sequence which is at least 96% identical to a nucleotide sequence selected from the group consisting of SEQ ID NOS:1-63 or the complement thereof.
Another embodiment of the invention provides an isolated and purified gene which comprises a coding sequence comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS:1-63 or the complement thereof.
Yet another embodiment of the invention provides a method for determining metastasis in a tissue sample. An expression product of a gene which comprises a coding sequence selected from the group consisting of SEQ ID NOS:1, 2, 4, 5, 9, 11, 13, 14, 18, 19, 20, 22, 24, 26, 29, 30, 33, 35, 36, 38-41, 45, 48, 52, 55, 57, 58, 60, 63-66, 69-74, 76, 80, 82, and 83 is measured in a tissue sample. A tissue sample which expresses the product is categorized as metastatic.
Still another embodiment of the invention provides a method for determining metastasis in a tissue sample. An expression product of a gene which comprises a sequence selected from the group consisting of SEQ ID NOS:3, 7, 8, 10, 12, 15-17, 21, 23, 28, 31, 34, 37, 42-44,46, 47, 49-51, 53, 59, 61, 62, 67, 68, 75, 77-79, 81, 84, and 85 is measured in a tissue sample. A tissue sample which does not express the product is categorized as metastatic.
Even another embodiment of the invention provides a method for determining metastatic potential in a tissue sample. An expression product of a gene which comprises a sequence selected from the group consisting of SEQ ID NOS:1, 2, 4, 5, 9, 11, 13, 14, 18, 19, 20, 22, 24, 26, 29, 30, 33, 35, 36, 38-41, 45, 48, 52, 55, 57, 58, 60, 63-66, 69-74, 76, 80, 82, and 83 is measured in a tissue sample. A tissue sample which expresses the product is categorized as having metastatic potential.
A further embodiment of the invention provides a method for determining metastatic potential in a tissue sample. An expression product of a gene which comprises a sequence selected from the group consisting of SEQ ID NOS:3, 7, 8, 10, 12, 15-17, 21, 23, 28, 31, 34, 37, 42-44, 46, 47, 49-51, 53, 59, 61, 62, 67, 68, 75, 77-79, 81, 84, and 85 is measured in a tissue sample. A tissue sample which does not express the product is categorized as having metastatic potential.
Another embodiment of the invention provides a method of predicting the propensity for metastatic spread of a breast tumor preferentially to bone or lung. An expression product of a gene which comprises a sequence selected from the group consisting of SEQ ID NO:1, 5, 11, 18, 20, 22, 24, 30, 33, 35, 36, 38, 45, 52, 58, 65, 66, 70, 74, 76, and 80 is measured in a breast tumor sample. A breast tumor sample which expresses the product is categorized as having a propensity to metastasize to bone or lung.
Even another embodiment of the invention provides a method of predicting propensity for metastatic spread of a breast tumor preferentially to lung. An expression product of a gene which comprises a sequence selected from the group consisting of SEQ ID NOS:2, 4, 9, 13 14, 19, 26, 29, 39-41, 48, 55,-57, 60, 63, 64, 72, 73, 82, and 83 is measured in a breast tumor sample. A breast tumor sample which expresses the product is characterized as having a propensity to metastasize to lung.
Still another embodiment of the invention provides a method of predicting propensity for metastatic spread of a colon tumor. An expression product of a gene which comprises the nucleotide sequence shown in SEQ ID NO:56 is measured in a colon tumor sample. A colon tumor sample which expresses the product is characterized as having a low propensity to metastasize.
Even another embodiment of the invention provides a method for determining metastasis in a tissue sample. An expression product of a gene which comprises a coding sequence selected from the group consisting of SEQ ID NOS:3, 7, 8, 10, 12, 15-17, 21, 23, 25, 28, 31, 34, 37, 42-44, 46, 47, 49, 61, 62, 67, 68, 75, 77-79, 5 81, 84, and 85 is measured in a tissue sample. A tissue sample which expresses the product is categorized as non-metastatic.
Yet another embodiment of the invention provides a method for determining metastasis in a tissue sample. An expression product of a gene which comprises a coding sequence selected from the group consisting of SEQ ID NOS:3, 7, 8, 10, 12, 15-17, 21, 23.25, 28, 31, 34, 37, 42-44, 46, 47, 49, 61, 62, 67, 68, 75, 77-79, 81, 84, and 85 is measured in a tissue sample. A tissue sample which does not express the product is categorized as metastatic.
The invention thus provides the art with a number of genes and proteins, which can be used as markers of metastasis. These are useful for more rationally is prescribing the course of therapy for breast or colon cancer patients.
DETAILED DESCRIPTION
It is a discovery of the present invention that a number of genes are differentially expressed between metastatic cancer cells, especially cancer cells of the breast and colon, and non-metastatic cancer cells. These genes are metastatic marker genes. This information can be utilized to make diagnostic reagents specific for the expression products of the differentially expressed genes. It can also be used in diagnostic and prognostic methods which will help clinicians in planning appropriate treatment regimes for cancers, especially of the breast or colon.
Some of the polynucleotides disclosed herein
Blackburn Robert P.
Canella Karen A.
Caputa Anthony C.
Chiron Corporation
Morley Kimberlin L.
LandOfFree
Metastatic breast and colon cancer regulated genes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Metastatic breast and colon cancer regulated genes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metastatic breast and colon cancer regulated genes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2941359