Metallization process and component

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Making electrical device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S313000, C427S098300

Reexamination Certificate

active

06174647

ABSTRACT:

This invention relates to the selective metallization of surfaces which have been treated so as to be particularly receptive to electroless deposition of metal. This process utilizes a technique of burying some of the treated surfaces with a photoresist in order to prevent channeling (shorting) between different conductive portions of a circuit. The process herein is particularly suited for the sequential build of circuit layers of e.g. electronic circuit boards.
Selective metallization procedures for electronic manufacture are known in the art. A process for plasma etching a substrate is disclosed in U.S. Pat. No. 5,053,318 incorporated herein by reference. In accordance with the processes of this patent, a suitable substrate, such as an electronic base material of this patent, is coated with a radiation-sensitive photoresist composition. The photoresist coating is then pattern imaged. Thereafter, and before development, the surface of the photoresist is contacted with an electroless plating catalyst. The photoresist coating is then contacted with a developer whereby plating catalyst adsorbed onto developer soluble portions of the coating is removed with solubilized photoresist. Plating catalyst remains on those portions of the coating that are insoluble in developer. This results in formation of a catalytic coating in an image pattern that conforms to the developed photoresist coating. The imaged catalytic coating is then metallized by contact with an electroless plating solution to form a thin metallic layer. The entire article is then subjected to plasma etching. The thin metallic layer functions as an etch barrier whereby the substrate is altered in a reverse image of the metallic layer. The remaining photoresist coating with the metallic layer may then be removed by contact with a photoresist stripper.
A selective metallization process for manufacture of printed circuit boards is disclosed in U.S. Pat. No. 5,158,860, incorporated herein by reference. In the process of this patent, a substrate is coated with a photoresist layer. The photoresist is then pattern imaged and developed to form a relief image. The article is then contacted with an electroless plating catalyst. The catalyst is adsorbed onto all surfaces with which it comes into contact, i.e., the side-walls of the photoresist and the underlying substrate. The top surface of the photoresist is then flood exposed. The catalytic layer adsorbed on the top surface of the photoresist coating is then removed by surface development. Catalyst remains in surfaces not exposed to activating radiation, i.e., the recesses within the photoresist relief image and on the bared substrate surface. Electroless metal may then be deposited over catalyzed surfaces whereby the walls of the relief image and the substrate become metallized. With continued plating, the entire volume of the recesses may be filled with deposited metal.
Another approach to selective metallization is described in U.S. Pat. No. 5,079,600, incorporated herein by reference. In accordance with this patent, metal pathways are formed on the surface of a substrate by a process that comprises formation of a self-assembled monomolecular radiation reactive layer. Preferred materials are characterized by a polar end, a non-polar opposite end with a reactive moiety at or near its terminus, and an intermediate region typically composed of saturated or unsaturated hydrocarbon chains. Organosilanes are a preferred class of materials. Thereafter, the reactivity of the terminus reactive groups on the film are altered in a selective pattern by exposure to imaged radiation to cause photolytic cleavage or transformation of the reactive terminus groups. Since irradiation is in a pattern, the reactivity of the monomolecular layer is altered in corresponding image pattern. In one embodiment, differential reactivity comprises creation of hydrophobic-hydrophilic regions in the pattern. The surface is then contacted with an electroless plating catalyst. Since the catalyst is an aqueous based material, it will selectively absorb on the hydrophilic portions of the monomolecular layer. The substrate may then be metal plated by contact with an electroless plating solution with metal depositing only over catalytic sites in the desired image pattern.
An improvement to the procedures of U.S. Pat. No. 5,077,085 is disclosed in published European Patent Application publication No. 0,510,711, incorporated herein by reference. In accordance with preferred procedures of this application, a process for selective metallization comprises the steps of formation of a layer over a substrate having a terminus group capable of bonding with a catalyst precursor. Preferably, the terminus group is a metal ion binding or ligating group, and the layer is a self-assembled film having a terminus ligating group. Following formation of the ligating layer and imaging of the same using procedures analogous to the procedures of the above-cited U.S. Pat. No. 5,079,600, the surface contains regions having reactive ligand groups in a desired image pattern. This layer is then contacted with a catalyst precursor solution such as a solution of palladium ions. The ions bond with the ligating groups of the ligating layer. Subsequent contact of the layer with an electroless plating catalyst containing a suitable reducing agent results in selective electroless metal deposition of metal onto the ligating layer in the desired pattern.
Another selective metallization process is disclosed in U.S. Pat. No. 5,468,597. In this patent, there is disclosed the steps of formation of a ligating layer over a substrate such as an electronic base material, coating the layer with an organic coating, especially a photoresist compositions, imaging the photoresist layer to provide a relief image, i.e., one having recesses therein open to the substrate, thus baring the ligating layer over the bared substrate, contact of the substrate with a catalytic precursor to bond the precursor to the exposed ligating groups to form a catalytic surface in a desired image pattern and metal deposition to form a metal layer in a desired pattern.
The catalytic precursor used is one that bonds with the ligating groups of the ligating layer typically by coordination bonding, but will not otherwise adsorb onto the surfaces of the article. This enables selective metallization because the metal depositing solution contacts catalytic material only in a desired image pattern. Following selective metallization, the metallized article can be completed such as by etching using the metal coating as an etch mask or continuing metal deposition to form a thick deposit.
U.S. Pat. No. 4,515,829 discloses a process for the electroless plating of through holes in a printed circuit board.
SUMMARY OF THE INVENTION
This invention provides a novel process for selective deposition of relatively thick metal pads and traces in the sequential build of circuit layers of a circuit board.
The process of this invention comprises the steps of applying a photoresist, e.g., a negative acting photoresist to an initial circuit layer on a substrate and imaging a via. The photoresist is then roughened, e.g., using a permanganate system. Thereafter a palladium ligand material comprising a polyquaternary amine is absorbed on the photoresist and the side walls of the photoresist defining the via.
A photoresist is then applied over the ligand layer and into the via. Thereafter, the photoresist is imaged for formation of conductive pads and traces.
The exposed ligand layer, i.e., the non photoresist buried ligand layer, is then catalyzed using a palladium halide selective catalyst (the palladium halide preferably being a palladium bromide). Thereafter, the palladium halide catalyst is reduced from Pd
++
to Pd
0
. At this time, the pads and traces are formed using electroless metal bath, e.g., a copper bath.
This process is an improvement over the art in that strongly adhering metallized surfaces are formed. In addition, the method used provides an improved method of preventing channeling (sh

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Metallization process and component does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Metallization process and component, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metallization process and component will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2453180

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.