Memory circuit with automatic precharge function, and...

Static information storage and retrieval – Read/write circuit – Data refresh

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S233100

Reexamination Certificate

active

06636449

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a memory circuit which requires periodic refresh operations, such as dynamic random access memory, and further relates to a memory circuit in which refresh operations are executed automatically without requiring a refresh command from outside, and which is capable of high-speed internal execution of operating commands from outside. This invention also relates to an integrated circuit device, which, in addition to external commands, is able to automatically generate and execute commands internally.
2. Description of the Related Art
Dynamic random access memory (DRAM) is widely used as large-capacity memory. Because DRAM is volatile memory, refresh operations are necessary.
FIG. 1
is a configurational view of a conventional memory circuit. The conventional memory circuit has a clock buffer
10
for input of an external clock signal CLK and generation of an internal clock signal CLK
1
in sync with this; a command decoder
11
for input of commands in sync with the internal clock signal CLK
1
; an address buffer
12
for input of addresses; and a data input/output buffer
13
for data input and output. In addition, a control circuit
14
controls operations of a memory core
15
in response to commands CMD input by the command decoder
11
. Operations of the memory core are also controlled in sync with the internal clock signal CLK
1
.
Such clock-synchronous DRAM (SDRAM) has, as refresh operations, auto-refresh and self-refresh. Auto-refresh is a refresh operation which is performed periodically between normal read and write operations, and is executed by means of an auto-refresh command supplied from outside. That is, when an auto-refresh command is input from outside, the command decoder
11
generates an auto-refresh command AR
1
, and in response to AR
1
the refresh control circuit
16
generates an internal refresh command REF. By means of this internal refresh command REF, the control circuit
14
controls the refresh operation. A selector
18
selects the address from the refresh address counter
17
and outputs the address to the address latch circuit
19
.
On the other hand, self-refresh is a refresh operation in which the memory device itself executes the refresh operation while in the power-down mode state, in response to refresh timing automatically generated by an internal oscillator OSC. In the power-down mode state, no commands (read or write) are supplied from outside, and so the refresh control circuit
16
generates an internal refresh command REF in response to refresh timing generated with arbitrary timing. Thus, the control circuit
14
controls the refresh operation.
In this way, commands are supplied from outside while in the normal operating state, and refresh commands are also supplied from outside and refresh operations executed in response. While in the power-down state, no commands are supplied from outside, and so refresh timing is automatically generated internally and refresh operations are executed.
In this way, in conventional memory circuits the memory controller which controls the memory circuit must control the refresh timing during the interval of the normal operating state. That is, the memory controller is equipped with a timer, and must issue auto-refresh commands to the memory circuit each time the refresh timing occurs. Hence, a problem with the memory controller is the complexity of memory circuit control.
In conventional memory circuits, the control circuit
14
executes control in response to read and write commands supplied in sync with the clock signal. Here, if the control circuit
14
is executing the previous internal operation, the next internal operation is executed in response to the newly supplied command, regardless of previous internal operations. Memory circuits have also been proposed in which, if during execution of the previous internal operation a new command is supplied from outside, that command is refused.
In the above latter case, refusal of a command from the memory controller is undesirable, and so memory circuits generally execute internal operations as-is in response to supplied commands, as in the former case. Hence, in the normal operating state, if a refresh command is issued autonomously within the memory circuit and refresh operations are executed, a command supplied during these operations may disturb the refresh operation. And if, as in the latter case, a supplied command is refused, control by the memory controller becomes even more complex.
SUMMARY OF THE INVENTION
Hence, one object of this invention is to provide a memory circuit capable of automatically executing refresh operations without receiving refresh commands from the memory controller.
Another object of this invention is to provide a memory circuit which, in normal operation, can automatically execute refresh operations without requiring refresh commands from outside, and which can also rapidly execute internal operations in response to normal commands from outside.
Yet another object of this invention is to provide an integrated circuit device capable of automatically issuing internal commands in addition to receipt of externally supplied commands, and of executing internal commands without disturbing operations corresponding to external commands.
In order to achieve the above objects, in a first aspect of this invention, an integrated circuit device comprises a first circuit which receives commands in sync with a clock signal and which internally generates a first internal command, and a second circuit which internally generates a second internal command in a prescribed cycle. The internal circuit executes internal operations in accordance with the first internal command through clock-synchronous operations, and when a second internal command is issued, sequentially executes internal operations corresponding to the second internal command and internal operations corresponding to the first internal command through clock-asynchronous operations.
In a more preferred embodiment, the above integrated circuit device is a memory circuit which requires refresh operations; the above first internal command is a read or a write command; the above second internal command is a refresh command; and the internal circuit is a memory control circuit. That is, in this embodiment, in the normal state the memory control circuit executes control operations corresponding to the first internal command through clock-synchronous operations, in accordance with commands received in sync with the clock signal. When a refresh command is generated internally as the second internal command, the memory control circuit, in clock-asynchronous operation, sequentially executes control operations corresponding to this refresh command and the first internal command. When internal operation cycles finally catch up to external operation cycles, the memory control circuit again executes control operations for the first internal command through clock-synchronous operations.
In another preferred embodiment, the integrated circuit device further comprises an internal clock generation circuit which generates a first internal clock signal in sync with an external clock signal and a second internal clock signal faster than the external clock signal. The internal circuit executes an internal operation corresponding to the first internal command in sync with the first internal clock signal during a normal state, and executes internal operations corresponding to the first internal command and internal operations corresponding to the second internal command in sync with the second internal clock signal when the second internal command is generated.
The first aspect of the invention can be applicable to asynchronous memory circuit. In this case, a specification of the memory circuit defines a minimum external command cycle according to which external commands are permitted to be supplied. And a memory controller has an internal operation cycle shorter than the minimum external command cycle. The memory control

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Memory circuit with automatic precharge function, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Memory circuit with automatic precharge function, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Memory circuit with automatic precharge function, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3174908

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.