Memory cell using negative differential resistance field...

Static information storage and retrieval – Systems using particular element – Negative resistance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S148000, C257S183000, C257S213000, C326S135000

Reexamination Certificate

active

06724655

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to semiconductor memory devices and technology, and in particular to static random access memory (SRAM) devices.
BACKGROUND OF THE INVENTION
The rapid growth of the semiconductor industry over the past three decades has largely been enabled by continual advancements in manufacturing technology which have allowed the size of the transistor, the basic building block in integrated circuits (ICs), to be steadily reduced with each new generation of technology. As the transistor size is scaled down, the chip area required for a given circuit is reduced, so that more chips can be manufactured on a single silicon wafer substrate, resulting in lower manufacturing cost per chip; circuit operation speed also improves, because of reduced capacitance and higher transistor current density. State-of-the-art fabrication facilities presently manufacture ICs with minimum transistor feature size smaller than 100 nm, so that microprocessor products with transistor counts approaching 100 million transistors per chip can be manufactured cost-effectively. High-density semiconductor memory devices have already reached the gigabit scale, led by dynamic random access memory (DRAM) technology. The DRAM memory cell consists of a single pass transistor and a capacitor (1T/1C), wherein information is stored in the form of charge on the capacitor. Although the DRAM cell provides the most compact layout (with area ranging between 4F
2
and 8F
2
, where F is the minimum feature size), it requires frequent refreshing (typically on the order of once per millisecond) because the charge on the capacitor leaks away at a rate of approximately 10
−15
Amperes per cell. This problem is exacerbated by technology scaling, because the transistor leakage current increases with decreasing channel length, and also because a reduction in cell capacitance results in a smaller number of stored charge carriers, so that more frequent refreshing is necessary. Thus, scaling of DRAM technology to much higher densities presents significant technological challenges.
Static RAM (SRAM) does not require refreshing and is generally faster than DRAM (approaching 1 ns access times as compared to tens of ns for DRAM). However, the SRAM cell is more complex, requiring either four n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) and two p-channel MOSFETs, or four n-channel MOSFETs and two polycrystalline-silicon (poly-Si) load resistors, resulting in significantly larger cell size (typically greater than >120 F
2
). Innovations which provide significant reductions in SRAM cell size while allowing the SRAM cell to retain its favorable operating characteristics are therefore highly desirable.
Negative differential resistance (NDR) devices have previously been proposed for compact static memory applications. E. Goto in
IRE Trans. Electronic Computers
, March 1960, p. 25 disclosed an SRAM cell consisting of two resonant tunneling diodes (RTDs) and a pass transistor. For a variety of NDR devices including RTDs, the current first increases with increasing applied voltage, reaching a peak value, then decreases with increasing applied voltage over a range of applied voltages, exhibiting negative differential resistance over this range of applied voltages and reaching a minimum (“valley”) value. At yet higher applied voltages, the current again increases with increasing applied voltage. Thus, the current-vs.-voltage characteristic is shaped like the letter “N”. A key figure of merit for NDR devices is the ratio of the peak current to the valley current (PVCR). The higher the value of the PVCR, the more useful the NDR device is for variety of circuit applications. The PVCR of RTDs is generally not high enough to make it practical for low-power SRAM application, because in order for the RTDs in a Goto cell to have sufficient current drive, the valley current is too large, causing large static power dissipation. In addition, RTDs require specialized fabrication process sequences so that the complexity of an integrated RTD/MOSFET SRAM process would be substantially higher than that of a conventional complementary MOS (CMOS) SRAM process, resulting in higher manufacturing cost.
Accordingly, there exists a significant need for NDR devices with very high (>10
6
) PVCR which can be easily integrated into a conventional CMOS technology, for compact, low-power, low-cost SRAM.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a static random access memory (SRAM) cell of significantly smaller size as compared to a conventional six-transistor SRAM cell, while retaining the desirable operating characteristics of the conventional SRAM cell without significant increase in manufacturing cost.
For achieving the object, the invention provides a semiconductor device comprising an n-channel insulated-gate field-effect transistor (IGFET) including a gate and source/drain electrodes, and two (preferably n-channel) NDR-FETs each including gate and source/drain electrodes, wherein the IGFET and NDR-FET elements are formed on a common substrate, with one of the source/drain electrodes of the IGFET semiconductor element connected to the source electrode of a first NDR-FET and also to the drain electrode of a second NDR-FET, the gate electrode of the IGFET connected to a first control terminal, the other one of the source/drain electrodes of the IGFET connected to a second control terminal, the drain electrode of the first NDR-FET connected to a power-supply terminal, the source electrode of the second NDR-FET connected to a grounded or negatively-biased terminal, and the gate electrodes of the NDR-FETs each biased at a constant voltage. Thus, among plural intersections between the I-V characteristic of the first NDR-FET and the I-V characteristic of the second NDR-FET, an intersection at which the gradients (obtained as a change in current in accordance with a change of the control terminal voltage) of the characteristics have different signs (positive, negative, or zero) is a stable operating point of the semiconductor device. Therefore, the semiconductor device can function as a bistable memory cell, with access to the data storage node provided via the IGFET.


REFERENCES:
patent: 3588736 (1971-06-01), McGroddy
patent: 3974486 (1976-08-01), Curtis et al.
patent: 4047974 (1977-09-01), Harari
patent: 4143393 (1979-03-01), DiMaria et al.
patent: 4806998 (1989-02-01), Vinter et al.
patent: 4945393 (1990-07-01), Beltram et al.
patent: 5021841 (1991-06-01), Leburton et al.
patent: 5023836 (1991-06-01), Mori
patent: 5032891 (1991-07-01), Takagi et al.
patent: 5084743 (1992-01-01), Mishra et al.
patent: 5093699 (1992-03-01), Weichold et al.
patent: 5130763 (1992-07-01), Delhaye et al.
patent: 5162880 (1992-11-01), Hazama et al.
patent: 5189499 (1993-02-01), Izumi et al.
patent: 5357134 (1994-10-01), Shimoji
patent: 5390145 (1995-02-01), Nakasha et al.
patent: 5442194 (1995-08-01), Moise
patent: 5448513 (1995-09-01), Hu et al.
patent: 5455432 (1995-10-01), Hartsell et al.
patent: 5463234 (1995-10-01), Toriumi et al.
patent: 5477169 (1995-12-01), Shen et al.
patent: 5523603 (1996-06-01), Fishbein et al.
patent: 5543652 (1996-08-01), Ikeda et al.
patent: 5606177 (1997-02-01), Wallace et al.
patent: 5633178 (1997-05-01), Kalnitsky
patent: 5689458 (1997-11-01), Kuriyama
patent: 5698997 (1997-12-01), Williamson, III et al.
patent: 5705827 (1998-01-01), Baba et al.
patent: 5732014 (1998-03-01), Forbes
patent: 5761114 (1998-06-01), Bertin et al.
patent: 5770958 (1998-06-01), Arai et al.
patent: 5773996 (1998-06-01), Takao
patent: 5798965 (1998-08-01), Jun
patent: 5804475 (1998-09-01), Meyer et al.
patent: 5843812 (1998-12-01), Hwang
patent: 5869845 (1999-02-01), Van der Wagt et al.
patent: 5883549 (1999-03-01), De Los Santos
patent: 5883829 (1999-03-01), Van der Wagt
patent: 5895934 (1999-04-01), Harvey et al.
patent: 5903170 (1999-05-01), Kulkarni et al.
patent: 5907159 (1999-05-01), Roh et al.
patent: 5936265 (1999-08-01), Koga
patent: 5942952 (1999-08-01), Nair et al.
pate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Memory cell using negative differential resistance field... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Memory cell using negative differential resistance field..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Memory cell using negative differential resistance field... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3193851

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.