Telephonic communications – Plural exchange network or interconnection – With interexchange network routing
Reexamination Certificate
1998-03-27
2001-02-06
Zele, Krista (Department: 2748)
Telephonic communications
Plural exchange network or interconnection
With interexchange network routing
C379S088170, C379S212010, C379S229000, C379S242000
Reexamination Certificate
active
06185289
ABSTRACT:
TECHNICAL FIELD
The present invention relates to an Advanced Intelligent Network, which provides automatic routing of calls to customer selected information sources using a dedicated short access number and enabling third party operators of the information sources to utilize a short code trigger point in call processing to initiate query and response procedures with their own databases on an equal access basis to control routing to their respective sources.
ACRONYMS
The written description uses a large number of acronyms to refer to various services and system components. Although generally known, use of several of these acronyms is not strictly standardized in the art. For purposes of this discussion, acronyms therefore will be defined as follows:
Action Control Point (ACP)
Advanced Intelligent Network (AIN)
Automatic Number Identification (ANI)
Call Processing Record (CPR)
Central Office (CO)
Common Channel Inter-office Signalling (CCIS)
Database (DB)
Data and Reporting System (DRS)
Dual Tone Multifrequency (DTMF)
Information Service Provider (ISP)
Integrated Service Control Point (ISCP)
Intelligent Peripheral (IP)
Multi-Services Application Platform (MSAP)
Office Action Control Point (OSO-ACP)
Personal Communications Service (PCS)
Personal Identification Number (PIN)
Plain Old Telephone Service (POTS)
Point In Call (PIC)
Point of Presence (POP)
Private Branch Exchange (PBX)
Service Control Point (SCP)
Service Creation Environment (SCE)
Service Management System (SMS)
Service Switching Point (SSP)
Signaling Point (SP)
Signaling System 7 (SS7)
Signaling Transfer Point (STP)
Telephone Company (TELCO)
Transaction Capabilities Applications Protocol (TCAP)
Voice Response Unit (VRU)
BACKGROUND ART
There is an increasing demand to obtain a wide variety of information over telephone lines. Many different companies provide information services in a wide range of formats including voice messages, computerized data bases, facsimile data, etc. The variety of information these services provide is virtually limitless. Examples include news, weather and traffic information, sports information and stock ticker data. Information service providers also may take orders for products and services, or offer other kinds of interactive functions. Typically, each Information Service Provider (ISP) will connect the equipment to provide the information in facsimile, data or voice form to one or more telephone lines. In the existing telephone network, each line connected information source has a telephone number. Typically, to access that source, a caller dials the complete telephone number for that source. To access a different source, the caller must dial a different number.
Alternatively, one information service provider might operate more than one source, for example a newspaper has a headline news service, a sports section service, a business service, etc. If such a provider does not want to require a separate number for each service, the provider could use a PBX or Centrex system with an automated attendant type feature. Typically, the user would call one published number for the information service provider. The automated attendant system answers the call, and the caller dials in a selection identifying the provider's one service the current call should connect to. The PBX or Centrex switch then connects the call to the appropriate information source. To reach a different information service provider, however, the caller must still know and use a different telephone number.
In the existing systems, whether one number identifies each actual source or identifies a collection of information services of one information provider, the numbers are all complete telephone numbers. If the call to the service provider is a local call, dialing requires seven digits. If the call is a long distance call, or the service uses an 800 or 900 type number, the telephone number dialed is ten digits. Remembering and using a collection of seven and ten digit numbers to access all information sources a telephone subscriber might be interested in is complicated and may actually discourage customers from using more than one or two different information service providers on a regular basis.
Clearly there is a need for a simpler access procedure in order to encourage increased public use of information services provided over the telephone network.
Recently, it has been proposed to use a three-digit access approach. Each information service provider in a particular service area would be assigned a three digit number, and the telephone network would route all calls to the service provider whenever a caller initially dialed those three digits. The three digit numbers would be “N11” type special dedicated numbers easily recognized by the telephone system, similar to the 911 number used for emergency calls and the 411 number used for directory assistance. The number of dedicated three digit numbers available, however, is quite limited. In fact there are currently only four such numbers, 211, 311, 511 and 711 not already in use. The available N11 type three digit numbers therefore constitute an extremely scarce resource. The proposed three digit access system would use up all four of the available N11 numbers. Another drawback of the proposed three digit access system is that the caller could access only four information service providers using the three digit numbers. One number would be dedicated to each information service provider.
Thus a need exists for a system using a short access number or code to access a large number of information providers. To the extent that the system uses special dedicated numbers, such as N11 numbers, the system must use as few as possible of such dedicated numbers.
In recent years, a number of new service features have been provided by an enhanced telephone network, sometimes referred to as an Advanced Intelligent Network (AIN). In an AIN type system, local and/or toll offices of the public telephone network having Service Switching Point (SSP) capabilities detect one of a number of call processing events identified as AIN “triggers”. For ordinary telephone service calls, there would be no event to trigger AIN processing; and the local and toll office switches would function normally and process such calls without referring to the central database for instructions. An SSP type office which detects a trigger will suspend call processing, compile a call data message and forward that message via a common channel interoffice signalling (CCIS) link to an Integrated Service Control Point (ISCP) which includes a Multi-Services Application Platform (MSAP) database. If needed, the ISCP can instruct the central office to obtain and forward additional information. Once sufficient information about the call has reached the ISCP, the ISCP accesses its stored data tables in the MSAP database to translate the received message data into a call control message and returns the call control message to the SSP office of the network via CCIS link. The network offices then use the call control message to complete the particular call.
An AIN type network for providing short code access to information providers was disclosed and described in detail in commonly assigned U.S. Pat. No. 5,418,844 to Morrisey et al., the disclosure of which is entirely incorporated herein by reference. In that network, a central office switch having SSP capabilities detects dialing off a short code, such as N11, as an AIN trigger. The SSP queries the ISCP for information as to how to route the particular call. For the service of routing to an information provider, the ISCP would return information instructing the SSP switching office to process the call in accord with information stored in a profile of the caller established in the ISCP database.
The Morrisey et al. system can use a single N11 number for all calls, or a first code number for preprogrammed call processing and a second number for casual access (e.g. 211 and 511). The system can route an information service call based at least in part on preprogrammed selection data for
Farris Robert D.
Hetz Harry A.
Bell Atlantic Network Services Inc.
Hoosain Allan
McDermott & Will & Emery
Zele Krista
LandOfFree
Mediated AIN control of short code access to information... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Mediated AIN control of short code access to information..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mediated AIN control of short code access to information... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2566357