Electrical computers and digital data processing systems: input/ – Intrasystem connection – Bus access regulation
Reexamination Certificate
1998-06-08
2001-01-23
Etienne, Ario (Department: 2781)
Electrical computers and digital data processing systems: input/
Intrasystem connection
Bus access regulation
C710S062000, C710S106000, C710S120000, C710S002000, C439S638000, C439S131000
Reexamination Certificate
active
06178474
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to notebook, laptop, and other portable computers, and more specifically, to a media connect module accessory for increasing the connectivity of such computers to peripheral devices.
2. Description of the Prior Art
Personal and notebook computers have become a ubiquitous tool for both personal and work related tasks. For a user, notebook, laptop, and portable computers offer the convenience and features of a larger computer in a compact package. Traditionally, printers, monitors, mice and other peripherals were connected to a computer through the use of individual connectors that permit communication between the computer and these devices by means of a copper wire cable. Most computing devices have utilized this method of connecting to peripheral devices for many years. In recent years, advances in technology as well as new standards and functions have brought about an increase in the type of connectors and peripheral devices that are desired by users to be connected to a computer. While the increase in available peripheral devices has provided new functions and added capabilities for the computer user, it has also produced a significant problem for notebook computer designers. This is because of the space constraint present in portable devices, i.e., the amount of space on the computer case which can be allotted to the variety of possible connectors. Thus, in many cases, a designer needs to trade off the number of possible or desired connectors with the space limitations of the computing unit. The designer is thus responsible for deciding on the number and type of connectors available to a user as part of the computer package. This decision is based on a variety of factors, including the intended use of the unit, space availability on the computer case, and market requirements, among others.
The variety of connectors available for a portable computer is as numerous as are the uses for the computer itself. There are “legacy” connectors that have been present since almost the beginning of personal computers and are still in use today, specialized connectors for multimedia functions, and audio connectors for audio equipment. These represent just a small subset of the type of connectors available for today's notebook computers. While connectors associated with particular types of peripheral devices have become de facto standards in most notebook computers, some of the newer and more specialized connectors are only available on certain notebooks and thus depend on the manufacturer's design choices. This has occurred because not all of the target users of a computer will desire all of the available connectors, so a manufacturer is forced to decide which set of connectors to incorporate into a computing device. However, the problem with this approach is that a user may find that in some situations they have a need for a connector not found in the existing connector selection, but are unable to expand the selection because the design does not have room for or otherwise permit connector expansion.
This problem has been addressed by specialized hardware for portable computers. Port replicators and docking stations are accessories available to a user to increase the connectivity options found on a portable computer. A port replicator is a device designed for desktop use which connects desktop peripherals, such as CRT monitors and printers, to a laptop computer. This is usually accomplished by connecting a port of the replicator directly to a connector on the backplane of the computer. The port replicator then provides a variety of I/O connections as an extension of the backplane connector. The primary benefit of a port replicator is that it eliminates the need to connect and disconnect each of the peripheral devices every time it is desired to use them with the laptop computer. Instead, the desired peripherals are connected to the replicator which then rests on a desktop where it may be more easily connected to the computer. However, traditional port replicators do not provide any new connection ports, but simply duplicate the ports and connectors already found on the computer. In addition, they are not designed to be portable and typically do not contain active circuitry for providing additional functionality. Furthermore, because the port replicator is connected directly to the backplane of the computer, it covers and renders inaccessible any existing connectors on the backplane. This can create a problem if a desired connector is found on the computer backplane but not on the port replicator.
A docking station is a “cradle” or holder in which a notebook computer is mounted to allow a user to “park” the computer and connect it to a source of power and connectors for various peripheral devices. As with port replicators, these devices do not increase the number of connectors available, but rather duplicate those found on the computer. In addition, the large size of docking cradles makes it cumbersome for a user to carry with them when traveling.
A significant difference between port replicators and docking stations is that a docking station typically includes a PCI (peripheral component interconnect) bus. This makes the docking station susceptible to what is termed the “hot docking” problem. This problem can arise when a peripheral device is connected to a portable computer while the computer is powered up. In such a situation it is desired to be able to connect the device to the computer without causing a temporary reduction in the power to the computer (thereby affecting the functioning of the computer, and in extreme cases, causing it to “crash”). In order to allow hot docking of the docking station to the computer, active circuits may be provided to prevent the PCI bus from failing and to provide high speed bus synchronization and expansion. The active circuits prevent the devices in the computer connected to the bus from becoming affected when the docking station is connected to the computer. Another possible solution to the hot docking problem is what is termed a “warm docking” approach in which the computer is placed into a suspended state (i.e., the power to the devices connected to the PCI bus is shut off) when the docking station is connected to the computer. This approach does not require the active circuits needed for hot docking, but does require specialized power management capabilities.
The widespread use of infrared communication ports (e.g., an “IrDA”) to permit remote communication and data transfer between a peripheral device and a computer or between two computers has added an additional constraint to the design of notebook computers. This is because while such devices do not require a direct physical connection, proper data transmission requires that the infrared port in the computer be aligned with the infrared port in the device it is communicating with within a specified angle. In most cases, the data will not transmit completely or accurately if the ports are not in the proper relative position or if there are physical objects that block transmission of the infrared signals. This requirement is commonly termed as the “line of sight” requirement. Traditionally, the IrDA port has been integrated into the main body of the notebook computer, often on the backplane of the computer. However, this approach is disadvantageous and creates usability problems because of the line of sight requirement. This is because a user needs to physically rotate or move the notebook computer or the other device so that the line of sight requirement can be satisfied. This is inconvenient and in some situations, may not be feasible.
What is desired is an apparatus for enhancing the connectivity options of a notebook, laptop, or other portable computer so that a user can take advantage of the increase in the types of peripheral devices that can be connected to the computer. It is also desired to have a less cumbersome and restrictive means for satisfying the infrared port line of sight requireme
Hamano Takeshi
Kim Darren
Pillai Manu
Sathe Samir
Yamada Isamu
Coudert Brothers
Etienne Ario
Fujitsu Limited
LandOfFree
Media connect module for portable computer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Media connect module for portable computer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Media connect module for portable computer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2467552