Electricity: conductors and insulators – Conduits – cables or conductors – Preformed panel circuit arrangement
Reexamination Certificate
2001-12-10
2003-12-23
Flynn, Nathan J. (Department: 2826)
Electricity: conductors and insulators
Conduits, cables or conductors
Preformed panel circuit arrangement
C174S250000, C174S068100
Reexamination Certificate
active
06667443
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATIONS
This application is based upon and claims the benefit of Japanese Patent Applications No. 2000-380634, filed on Dec. 14, 2000, No. 2001-195375, filed on Jun. 27, 2001, and No. 2001-333021, filed on Oct. 30, 2001, the contents of which are incorporated herein by reference.
BACKGROUND OF THE PRESENT INVENTION
1. Field of the Invention
The present invention relates to a manufacturing method of a multilayer substrate, specifically of a multilayer substrate having electrodes formed at both sides thereof.
2. Related Art
Heretofore, a manufacturing method of a multilayer substrate, which employs a so-called double-sided substrate in which conductor patterns connected with each other by interlayer connection are formed on both sides thereof, is known as a manufacturing method of a multilayer substrate having electrodes formed on both sides thereof to achieve electrical connection.
For example, a manufacturing method of a multilayer substrate is disclosed in JP-A-2000-38464. In this document, a manufacturing method of a multilayer substrate is disclosed, in which a plurality of double-sided substrates, each of which has an interlayer connection, are produced and laminated with a film insulator to which a treatment capable of an interlayer connection is carried out interposed therebetween, so that a multilayer substrate is produced that has electrodes on both sides thereof. Moreover, a manufacturing method of a multilayer substrate is disclosed, in which a double-sided substrate having an interlayer connection is produced, and single-sided conductor patterned films to which a treatment capable of an interlayer connection is carried out are laminated on both sides of the double-sided substrate, so that so that a multilayer substrate is produced that has electrodes on both sides thereof.
However, in the above-described prior art, the double-sided substrate (double-sided conductor patterned film) and the film insulator (a film without patterned conductor) are respectively formed, and combined with each other to form the multilayer substrate having the electrodes on the both sides thereof. Alternatively, the double-sided substrate (double-sided conductor patterned film) and the single-sided conductor patterned substrate are respectively formed, and combined with each other to form the multilayer substrate having the electrodes on the both sides thereof. Consequently, there is a problem in which processing steps are complicated, and production cost becomes high.
The present invention has been made in view of the above-mentioned problem, and an object thereof is to provide a manufacturing method of multilayer substrate that can be simplified and reduced in producing cost.
SUMMARY OF THE INVENTION
To achieve the object above described, according to a first aspect of the present invention, a step for laminating single-sided conductor patterned films, each of which has a resin film and a conductor pattern formed only on a single side of the resin film for forming a laminated films, and a step for removing at least a portion of a surface resin film that covers a portion of the conductor pattern to be an electrode in a single-sided conductor patterned film, at a side of the laminated films where the resin film is disposed at a surface thereof, are comprised in a manufacturing method. In this method, electrodes are formed respectively at both principal surfaces of a multilayer substrate composed of the single-sided conductor patterned films, and the electrodes are composed of conductor patterns, respectively.
According to this method, the single-sided conductor patterned films, each of which has the resin film and the conductor pattern formed only on the single side of the resin film, are laminated to form the laminated films, at least the portion of the surface resin film is removed so as to expose the electrode, and therefore the multilayer substrate with the electrodes formed at the both principal surfaces thereof can be produced. Therefore, it is unnecessary to produce the double-sided substrate in midstream of the manufacturing process, whereby it is unnecessary to provide a double-sided substrate forming process. Thus, the manufacturing process is not complicated and can be reduced in cost.
According to a second aspect of the present invention, a step for forming a resist film on a surface of the laminated films where the conductor pattern is exposed, and a step for forming a hole in the resist film at a region corresponding to a location where the electrode is to be formed are comprised in the manufacturing method.
According to this method, the surface of the laminated single-sided conductor patterned films where the conductor pattern is exposed can be covered with the resist film. Therefore, the conductor pattern can be protected except the location where the electrode is to be formed.
According to a third aspect of the present invention, the resist film is composed of the same material as the resin film.
According to this, since the resist film is composed of the same material as the resin film, the resist film is easily attached to the resin film. Therefore, the multilayer substrate with the resist film kept certainly can be obtained.
According to a fourth aspect of the present invention, the resin film is composed of a thermoplastic resin, wherein after the laminating step at which the single-sided conductor patterned films are laminated, mutual adhesion between each of the single-sided conductor patterned films is performed by applying pressure to the both principal surfaces of the substrate while heating.
According to this method, the respective single-sided conductor patterned films can adhere with each other all at once. Therefore, the manufacturing method can be simplified so that time for manufacturing can be shortened, and therefore, the manufacturing cost can be further reduced.
According to a fifth aspect of the present invention, the resin film is composed of a thermoplastic resin, wherein after the single-sided conductor patterned films are laminated and the resist is formed, mutual adhesion between each of the single-sided conductor patterned films and between the resist film and an adjoining single-sided conductor patterned film is performed by pressing both principal surfaces of the substrate while heating.
According to this method, the respective single-sided conductor patterned films and the resist film can adhere with each other all at once. Therefore, the manufacturing method can be simplified so that time for manufacturing can be shortened, and therefore, the manufacturing cost can be further reduced.
According to a six aspect of the present invention, the substrate is heated up at a temperature where an elastic modulus of the thermoplastic resin is in a range from 1 to 1000 MPa in applying pressure and heat to the multilayer substrate.
According to this method, the resin film is heated up with pressure so as to be sufficiently lowered in elastic modulus, i.e., in such a degree from 1 to 1000 MPa, so that the single-sided conductor patterned films surely adhere with each other.
According to a seventh aspect of the present invention, except a single-sided conductor patterned film having a resin film constituting the principal surface of the multilayer substrate, each single-sided conductor patterned film has a via hole through which the conductor pattern as a bottom face is exposed and, which is filled with a conductive paste so that respective conductor patterns of adjacent single-sided conductor patterned films are electrically connected with each other.
According to this method, an interlayer electrical connection between each of the conductor patterns in the multilayer substrate can be secured by the conductive paste in the via hole.
According to a eighth aspect of the present invention, a step for laminating single-sided conductor patterned films, each of which has a resin film, a conductor pattern formed only on a single side of the resin film and a via hole that is formed at a predetermined location and filled with an inte
Harada Toshikazu
Kamiya Tetsuaki
Kamiya Yasutaka
Kondo Koji
Masuda Gentaro
Denso Corporation
Flynn Nathan J.
Posz & Bethards, PLC
Quinto Kevin
LandOfFree
Manufacturing method of multilayer substrate and multilayer... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Manufacturing method of multilayer substrate and multilayer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manufacturing method of multilayer substrate and multilayer... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3097138