Manufacturing method for phase change RAM with electrode...

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S128000, C438S667000, C438S652000

Reexamination Certificate

active

07605079

ABSTRACT:
A method for manufacturing a phase change memory device comprises forming an electrode layer. Electrodes are made in the electrode layer using conductor fill techniques that are also used inter-layer conductors for metallization layers, in order to improve process scaling with shrinking critical dimensions for metallization layers. The electrode layer is made by forming a multi-layer dielectric layer on a substrate, etching the multi-layer dielectric layer to form vias for electrode members contacting circuitry below, forming insulating spacers on the vias, etching through a top layer in the multi-layer dielectric layer to form trenches between the insulating spacers for electrode members contacting circuitry above, filling the vias and trenches with a conductive material using the metallization process. Thin film bridges of memory material are formed over the electrode layer.

REFERENCES:
patent: 3271591 (1966-09-01), Ovshinsky
patent: 3530441 (1970-09-01), Ovshinsky
patent: 4599705 (1986-07-01), Holmberg et al.
patent: 4719594 (1988-01-01), Young et al.
patent: 4876220 (1989-10-01), Mohsen et al.
patent: 5166096 (1992-11-01), Cote et al.
patent: 5166758 (1992-11-01), Ovshinsky et al.
patent: 5177567 (1993-01-01), Klersy et al.
patent: 5534712 (1996-07-01), Ovshinsky et al.
patent: 5687112 (1997-11-01), Ovshinsky
patent: 5789277 (1998-08-01), Zahorik et al.
patent: 5789758 (1998-08-01), Reinberg
patent: 5814527 (1998-09-01), Wolstenholme et al.
patent: 5831276 (1998-11-01), Gonzalez et al.
patent: 5837564 (1998-11-01), Sandhu et al.
patent: 5869843 (1999-02-01), Harshfield
patent: 5879955 (1999-03-01), Gonzalez et al.
patent: 5920788 (1999-07-01), Reinberg
patent: 5952671 (1999-09-01), Reinberg et al.
patent: 5970336 (1999-10-01), Wolstenholme et al.
patent: 5985698 (1999-11-01), Gonzalez et al.
patent: 5998244 (1999-12-01), Wolstenholme et al.
patent: 6011725 (2000-01-01), Eitan
patent: 6025220 (2000-02-01), Sandhu
patent: 6031287 (2000-02-01), Harshfield
patent: 6034882 (2000-03-01), Johnson et al.
patent: 6077729 (2000-06-01), Harshfield
patent: 6087674 (2000-07-01), Ovshinsky et al.
patent: 6104038 (2000-08-01), Gonzalez et al.
patent: 6111264 (2000-08-01), Wolstenholme et al.
patent: 6114713 (2000-09-01), Zahorik
patent: 6117720 (2000-09-01), Harshfield
patent: 6147395 (2000-11-01), Gilgen
patent: 6150253 (2000-11-01), Doan et al.
patent: 6153890 (2000-11-01), Wolstenholme et al.
patent: 6177317 (2001-01-01), Huang et al.
patent: 6185122 (2001-02-01), Johnson et al.
patent: 6189582 (2001-02-01), Reinberg et al.
patent: 6236059 (2001-05-01), Wolstenholme et al.
patent: RE37259 (2001-07-01), Ovshinsky
patent: 6271090 (2001-08-01), Huang et al.
patent: 6280684 (2001-08-01), Yamada et al.
patent: 6287887 (2001-09-01), Gilgen
patent: 6314014 (2001-11-01), Lowrey et al.
patent: 6320786 (2001-11-01), Chang et al.
patent: 6339544 (2002-01-01), Chiang et al.
patent: 6351406 (2002-02-01), Johnson et al.
patent: 6420215 (2002-07-01), Knall et al.
patent: 6420216 (2002-07-01), Clevenger et al.
patent: 6420725 (2002-07-01), Harshfield
patent: 6423621 (2002-07-01), Doan et al.
patent: 6429064 (2002-08-01), Wicker
patent: 6462353 (2002-10-01), Gilgen
patent: 6483736 (2002-11-01), Johnson et al.
patent: 6487114 (2002-11-01), Jong et al.
patent: 6501111 (2002-12-01), Lowrey
patent: 6511867 (2003-01-01), Lowrey et al.
patent: 6512241 (2003-01-01), Lai
patent: 6514788 (2003-02-01), Quinn
patent: 6534781 (2003-03-01), Dennison
patent: 6545903 (2003-04-01), Wu
patent: 6555860 (2003-04-01), Lowrey et al.
patent: 6563156 (2003-05-01), Harshfield
patent: 6566700 (2003-05-01), Xu
patent: 6567293 (2003-05-01), Lowrey et al.
patent: 6579760 (2003-06-01), Lung
patent: 6586761 (2003-07-01), Lowrey
patent: 6589714 (2003-07-01), Maimon et al.
patent: 6593176 (2003-07-01), Dennison
patent: 6597009 (2003-07-01), Wicker
patent: 6605527 (2003-08-01), Dennison et al.
patent: 6605821 (2003-08-01), Lee et al.
patent: 6607974 (2003-08-01), Harshfield
patent: 6613604 (2003-09-01), Maimon et al.
patent: 6617192 (2003-09-01), Lowrey et al.
patent: 6621095 (2003-09-01), Chiang et al.
patent: 6627530 (2003-09-01), Li et al.
patent: 6639849 (2003-10-01), Takahashi et al.
patent: 6673700 (2004-01-01), Dennison et al.
patent: 6744088 (2004-06-01), Dennison
patent: 6791102 (2004-09-01), Johnson et al.
patent: 6797979 (2004-09-01), Chiang et al.
patent: 6805563 (2004-10-01), Ohashi
patent: 6815704 (2004-11-01), Chen
patent: 6861267 (2005-03-01), Xu et al.
patent: 6864500 (2005-03-01), Gilton
patent: 6864503 (2005-03-01), Lung
patent: 6867638 (2005-03-01), Saiki et al.
patent: 6888750 (2005-05-01), Walker et al.
patent: 6894305 (2005-05-01), Yi et al.
patent: 6927410 (2005-08-01), Chen
patent: 6933516 (2005-08-01), Xu
patent: 6936840 (2005-08-01), Sun et al.
patent: 6937507 (2005-08-01), Chen
patent: 6992932 (2006-01-01), Cohen
patent: 2004/0248339 (2004-12-01), Lung
patent: 2005/0215009 (2005-09-01), Cho
patent: 2006/0284157 (2006-12-01), Chen et al.
patent: 2006/0286709 (2006-12-01), Lung et al.
patent: WO 00/45108 (2000-08-01), None
patent: WO 00/79539 (2000-12-01), None
patent: WO 01/45108 (2001-06-01), None
Adler, David, “Amorphous-Semiconductor Devices,” Sci. Amer., vol. 236, pp. 36-48, May 1977.
Adler, D. et al., “Threshold Switching in Chalcogenide-Glass Thin Films,” J. Appl/Phys 51(6), Jun. 1980, pp. 3289-3309.
Ahn, S.J. et al., “A Highly Manufacturable High Density Phase Change Memory of 64 Mb and Beyond,” IEEE IEDM 2004, pp. 907-910.
Axon Technologies Corporation paper: Technology Description, pp. 1-6.
Bedeschi, F. et al., “4-MB MOSFET-Selected Phase-Change Memory Experimental Chip,” IEEE, 2004, 4 pp.
Blake thesis, “Investigation of GeTeSb5 Chalcogenide Films for Use as an Analog Memory,” AFIT/GE/ENG/00M-04, Mar. 2000, 121 pages.
Chen, An et al., “Non-Volatile Resistive Switching for Advanced Memory Applications,” IEEE IEDM , Dec. 5-7, 2005, 4 pp.
Cho, S. L. et al., “Highly Scalable On-axis Confined Cell Structure for High Density PRAM beyond 256Mb,” 2005 Symposium on VLSI Technology Digest of Technical Papers, pp. 96-97.
Gill, Manzur et al., “A High-Performance Nonvolatile Memory Technology for Stand-Alone Memory and Embedded Applications,” 2002 IEEE-ISSCC Technical Digest (TD 12.4), 7 pp.
Ha, Y. H. et al. “An Edge Contact Type Cell fro Phase Change RAM Featuring Very Low Power Consumption,” 2003 Symposium on VLSI Technology Digest of Technical Papers, pp. 175-176.
Haring Bolivar, P. et al., “Lateral Design for Phase Change Random Access Memory Cells with Low-Current Consumption,” presented at 3rdE*PCOS 04 Symposium in Balzers, Principality of Liechtenstein, Sep. 4-7, 2004, 4 pp.
Horii, H. et al., “A Novel Cell Technology Using N-doped GeSbTe Films for Phase Change RAM,” 2003 Symposium on VLSI Technology Digest of Technical Papers, pp. 177-178.
Hwang, Y. N. et al., “Full Integration and Reliability Evaluation of Phase-change RAM Based on 0.24 μm-CMOS Technologies,” 2003 Symposium on VLSI Technology Digest of Technical Papers, pp. 173-174.
Iwasaki, Hiroko et al., “Completely Erasable Phase Change Optical Disk,” Jpn. J. Appl. Phys., Feb. 1992, pp. 461-465, vol. 31.
Jeong, C. W. et al., “Switching Current Scaling and Reliability Evaluation in PRAM,” IEEE Non-Volatile Semiconductor Memory Workshop, Monterey, CA, 2004, pp. 28-29 and workshop cover sheet.
Kim, Kinam et al., “Reliability Investigations for Manufacturable High Density PRAM,” IEEE 43rdAnnual International Reliability Physics Symposium, San Jose, 2005, pp. 157-162.
Kojima, Rie et al., “Ge-Sn-Sb-Te Phase-change Recording Material Having High Crystallization Speed,” Proceedings of PCOS 2000, pp. 36-41.
Lacita, A. L.; “Electrothermal and Phase-change Dynamics in Chalcogenide-based Memories,” IEEE IEDM 2004, 4 pp.
Lai, Stefan, “Current Status of the Phase Change Memory and Its Future,” IEEE IEDM 2003,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Manufacturing method for phase change RAM with electrode... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Manufacturing method for phase change RAM with electrode..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manufacturing method for phase change RAM with electrode... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4077543

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.