Manufacture of paper and paperboard

Paper making and fiber liberation – Processes and products – Non-fiber additive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C162S168300, C162S181800

Reexamination Certificate

active

06391156

ABSTRACT:

This invention relates to processes of making paper and paperboard from a cellulosic stock, employing a novel flocculating system.
During the manufacture of paper and paper board a cellulosic thin stock is drained on a moving screen (often referred to as a machine wire) to form a sheet which is then dried. It is well known to apply water soluble polymers to the cellulosic suspension in order to effect flocculation of the cellulosic solids and enhance drainage on the moving screen.
In order to increase output of paper many modern paper making machines operate at higher speeds. As a consequence of increased machine speeds a great deal of emphasis has been placed on drainage and retention systems that provide increased drainage. However, it is known that increasing the molecular weight of a polymeric retention aid which is added immediately prior to drainage will tend to increase the rate of drainage but damage formation. It is difficult to obtain the optimum balance of retention, drainage, drying and formation by adding a single polymeric retention aid and it is therefore common practice to add two separate materials in sequence.
EP-A-235893 provides a process wherein a water soluble substantially linear cationic polymer is applied to the paper making stock prior to a shear stage and then reflocculating by introducing bentonite after that shear stage. This process provides enhanced drainage and also good formation and retention. This process which is commercialised by Ciba Specialty Chemicals under the Hydrocol® trade mark has proved successful for more than a decade.
More recently there have been various attempts to provide variations on this theme by making minor modifications to one or more of the components.
U.S. Pat. No. 5,393,381 describes a process in which a process of making paper or board by adding a water soluble branched cationic polyacrylamide and a bentonite to the fibrous suspension of pulp. The branched cationic polyacrylamide is prepared by polymerising a mixture of acrylamide, cationic monomer, branching agent and chain transfer agent by solution polymerisation.
U.S. Pat. No. 5,882,525 describes a process in which a cationic branched water soluble polymer with a solubility quotient greater than about 30% is applied to a dispersion of suspended solids, e.g. a paper making stock, in order to release water. The cationic branched water soluble polymer is prepared from similar ingredients to U.S. Pat. No. 5,393,381 i.e. by polymerising a mixture of acrylamide, cationic monomer, branching agent and chain transfer agent.
In WO-A-9829604 a process of making paper is described in which a cationic polymeric retention aid is added to a cellulosic suspension to form flocs, mechanically degrading the flocs and then reflocculating the suspension by adding a solution of a second anionic polymeric retention aid. The anionic polymeric retention aid is a branched polymer which is characterised by having a rheological oscillation value of tan delta at 0.005 Hz of above 0.7 or by having a deionised SLV viscosity number which is at least three times the salted SLV viscosity number of the corresponding polymer made in the absence of branching agent. The process provided significant improvements in retention and formation by comparison to the earlier prior art processes.
EP-A-308752 describes a method of making paper in which a low molecular weight cationic organic polymer is added to the furnish and then a colloidal silica and a high molecular weight charged acrylamide copolymer of molecular weight at least 500,000. The description of the high molecular weight polymers indicates that they are linear polymers.
However, there still exists a need to further enhance paper making processes by further improving drainage, retention and formation. Furthermore there also exists the need for providing a more effective flocculation system for making highly filled paper.
According to the present invention a process is provided for making paper or paper board comprising forming a cellulosic suspension, flocculating the suspension, draining the suspension on a screen to form a sheet and then drying the sheet, characterised in that the suspension is flocculated using a flocculation system comprising a swellable clay and an anionic branched water soluble polymer that has been formed from water soluble ethylenically unsaturated anionic monomer or monomer blend and branching agent and wherein the polymer has
(a) intrinsic viscosity above 1.5 dl/g and/or saline Brookfield viscosity of above about 2.0 mPa.s and
(b) rheological oscillation value of tan delta at 0.005 Hz of above 0.7 and/or
(c) deionised SLV viscosity number which is at least three times the salted SLV viscosity number of the corresponding unbranched polymer made in the absence of branching agent.
It has surprisingly been found that flocculating the cellulosic suspension using a flocculation system that comprises a swellable clay and anionic branched water soluble polymer with the special rheological characteristics provides improvements in retention, drainage and formation by comparison to using the anionic branched polymer in the absence of the swellable clay system or the swellable clay in the absence of the anionic branched polymer.
The swellable clays may for instance be typically a bentonite type clay. The preferred clays are swellable in water and include clays which are naturally water swellable or clays which can be modified, for instance by ion exchange to render them water swellable. Suitable water swellable clays include but are not limited to clays often referred to as hectorite, smectites, montmorillonites, nontronites, saponite, sauconite, hormites, attapulgites and sepiolites. Typical anionic swelling clays are described in EP-A-235893 and EP-A-335575.
Most preferably the clay is a bentonite type clay. The bentonite may be provided as an alkali metal bentonite. Bentonites occur naturally either as alkaline bentonites, such as sodium bentonite or as the alkaline earth metal salt, usually the calcium or magnesium salt. Generally the alkaline earth metal bentonites are activated by treatment with sodium carbonate or sodium bicarbonate. Activated swellable bentonite clay is often supplied to the paper mill as dry powder. Alternatively the bentonite may be provided as a high solids flowable slurry, for example at least 15 or 20% solids, for instance as described in EP-A-485124, WO-A-9733040 and WO-A-9733041.
In paper making the bentonite may be applied to the cellulosic suspension as an aqueous bentonite slurry. Typically the bentonite slurry comprises up to 10% by weight bentonite. The bentonite slurry will normally comprise at least 3% bentonite clay, typically around 5% by weight bentonite. When supplied to the paper mill as a high solids flowable slurry usually the slurry is diluted to an appropriate concentration. In some instances the high solids flowable slurry of bentonite may be applied directly to the paper making stock.
The anionic branched polymer is formed from a water soluble monomer blend comprising at least one anionic or potentially anionic ethylenically unsaturated monomer and a small amount of branching agent for instance as described in WO-A-9829604. Generally the polymer will be formed from a blend of 5 to 100% by weight anionic water soluble monomer and 0 to 95% by weight non-ionic water soluble monomer. Typically the water soluble monomers have a solubility in water of at least 5 g/100 cc. The anionic monomer is preferably selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, crotonic acid, itaconic acid, 2-acrylamido-2-methylpropane sulphonic acid, allyl sulphonic acid and vinyl sulphonic acid and alkali metal or ammonium salts thereof. The non-ionic monomer is preferably selected from the group consisting of acrylamide, methacrylamide, N-vinyl pyrrolidone and hydroxyethyl acrylate. A particularly preferred monomer blend comprises acrylamide and sodium acrylate.
The branching agent can be any chemical material that causes branching by reaction through the carboxylic or othe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Manufacture of paper and paperboard does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Manufacture of paper and paperboard, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manufacture of paper and paperboard will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2850714

All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.