Active solid-state devices (e.g. – transistors – solid-state diode – With means to prevent inspection of or tampering with an...
Reexamination Certificate
2001-09-26
2003-12-02
Thomas, Tom (Department: 2811)
Active solid-state devices (e.g., transistors, solid-state diode
With means to prevent inspection of or tampering with an...
C257S679000, C257S678000, C713S194000, C713S189000, C337S225000, C361S672000, C365S033000, C380S052000
Reexamination Certificate
active
06657314
ABSTRACT:
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The invention lies in the integrated technology field. More specifically, the invention relates to an integrated circuit and, in particular, to an integrated circuit which ensures reliable protection against analysis and manipulation, even when using modern analysis and manipulation systems.
Recently, protection of integrated circuits against analysis and manipulation has been becoming increasingly important. In this context, there is a major requirement to protect the information contained in integrated circuits against being analyzed or changed by unauthorized third parties. For the purposes of this application, the term “information” should be understood in its widest sense and, for example, is intended to cover data, software programs, control lines and the like.
One previously normal method for protecting critical information against analysis and manipulation is for this information to be kept in a level that is as deep as possible in the integrated circuit. In this way, the circuit diagram is protected, at least against optical analysis.
Furthermore, it is normal to cover the information that is concealed in the deep level with lines associated with the circuit in a level located above it. However, it is difficult to produce this concealment over the entire area and consistently. Furthermore, using modern appliances such as a FIB (focused ion beam) system, it has become possible to remove the lines used for concealment and to link them again in such a manner that they can no longer prevent intentional analysis or manipulation. Better protection is achieved if a layer which is wired on its own and is used only for shielding the critical information is provided in an upper level. This allows the layer that contains the information to be concealed in a consistent manner. However, one problem that remains is that, using modern equipment such as the FIB, this wired level can be manipulated, and its protective effect can thus be entirely or partially cancelled out.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a tamper-proof integrated circuit, which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which ensures reliable protection of the information contained in the integrated circuit, even when modern analysis or manipulation tools are utilized.
With the foregoing and other objects in view there is provided, in accordance with the invention, an integrated circuit, comprising:
a first level containing a circuit with information to be protected;
at least one second level covering the first level on one side and enabling access to the first level from outside the integrated circuit, and a network formed in the at least one second level;
the network having a plurality of nodes connected to at least one current source;
a comparator linked to at least some of the nodes for nominal-actual comparison of currents carried by respective the nodes;
the network being configured such that a characteristic output current can be tapped off when an input current is fed into the network from the current source at each of the nodes linked to the comparator for nominal-actual comparison; and
the comparator for the nominal-actual comparison being configured such that an error in the characteristic output current from the respective the node results in a change to the information in the circuit in the first level.
In other words, the invention thus relates to an integrated circuit which has a first level wherein a circuit with information to be protected is formed. This first level is also referred to in the following text as the information level. The integrated circuit may be formed, for example, in a semiconductor chip. The term “level” could in this case not be understood as meaning that this may be an absolutely planar surface.
The integrated circuit furthermore has at least one second level, which covers the first level on one side and from which the information level can be accessed from outside the integrated circuit. A network having a large number of nodes is formed in the second level, which is also referred to as the network level in the following text. This network is connected to at least one current source.
According to the invention, at least some of the nodes in the network level are connected to a comparator (here to be understood in its broadest meaning, namely as any device or combination which enables nominal-actual comparison of the currents transmitted by the respective nodes). Furthermore, the network is designed such that a characteristic output current is produced when an input current is fed into the network from the at least one current source at each of the nodes which are linked to the nominal-actual comparison means, and this output current can be tapped off there. The means for the nominal-actual comparison are designed such that the information stored in the circuit in the first level is changed if the comparison means find an error from the characteristic output current from the respective node.
Thus—as was already known from the prior art—a separate shielding level is likewise used in the integrated circuit according to the invention, and is located above the level carrying the information to be protected. However, in contrast to the prior art, a network is formed in this shielding level whose nodes are at least in some cases linked via the nominal-actual comparison means to the circuit of the information level located underneath it. An input current is fed into the network from at least one current source, is passed on via the network and leads, at the individual nodes, to an output current which is characteristic for each node. These characteristic output currents are tapped off at the nodes which are connected to the nominal-actual comparison means, and are checked using the means for a nominal-actual comparison to determine whether the respectively tapped-off characteristic output current matches the output current to be expected for that respective node. If this is not the case, the information stored in the circuit in the first level is changed.
An error is found between the nominal value and the actual value whenever any external intervention takes place in the network for the purpose of manipulation or analysis. The configuration according to the invention of the network level and the interlinking mean that any such external intervention will invariably lead to a change to the values at a number of nodes. These complex changes would need to be taken into account and corrected in any attempt to analyze the circuit. Owing to the large number of changes produced, this is, however, impossible in practice.
The integrated circuit according to the invention therefore has excellent protection against analysis and manipulation.
The network of the integrated circuit according to the invention is preferably designed such that a large number of resistances and/or capacitances and/or inductances are arranged between the nodes. This means that the input current produced by the at least one current source produces at each node an output current which is different and is characteristic of that node, depending on the route on which it passes through the network and which resistances, capacitances or inductances is has passed through.
In an integrated circuit which is formed in a semiconductor chip, the network can preferably be produced by doping a layer of semiconductor material. A polysilicon layer is expediently used for this purpose. The resistance can in this case be controlled, for example, by the nature and/or concentration of the implanted materials.
n-in-n doping or p-in-p doping is particularly preferred. The network structures that are produced then differ from the surface surrounding them only in the doping concentration. This makes it extremely difficult to detect the network. Optical analysis of the network is virtually impossible, and it is very much more difficult to identify possible points for potential m
Greenberg Laurence A.
Im Junghwa
Infineon - Technologies AG
Mayback Gregory L.
Stemer Werner H.
LandOfFree
Manipulation-proof integrated circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Manipulation-proof integrated circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manipulation-proof integrated circuit will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3177885