Making an olefin product from an oxygenate

Chemistry of hydrocarbon compounds – Unsaturated compound synthesis – From nonhydrocarbon feed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C585S639000

Reexamination Certificate

active

06437208

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a method for converting an oxygenate feedstock to an olefin product. In particular, this invention relates to a method for converting an oxygenate feedstock to an olefin product by contacting the feedstock with a silicoaluminophosphate catalyst at an average catalyst feedstock exposure index of at least 1.0.
BACKGROUND OF THE INVENTION
Olefins, particularly ethylene and propylene, have been traditionally produced from petroleum feedstocks by either catalytic or steam cracking. Promising alternative feedstocks for making ethylene and propylene are oxygenates. Particularly promising oxygenate feedstocks are alcohols, such as methanol and ethanol, dimethyl ether, methyl ethyl ether, diethyl ether, dimethyl carbonate, and methyl formate. Many of these oxygenates can be produced by fermentation, or from synthesis gas derived from natural gas, petroleum liquids, coke materials, including coal, recycled plastics, municipal wastes, or any appropriate organic material. Because of the wide variety of sources, alcohol, alcohol derivatives, and other oxygenates have promise as an economical, non-petroleum source for ethylene and propylene production.
In converting oxygenates to ethylene and propylene products, by-products are also formed. Representative by-products include alkanes (methane, ethane, propane, and larger), aromatic compounds, carbon oxides and carbonaceous deposits on and within the catalyst materials (also referred to as “coke”).
During conversion of oxygenates to ethylene and propylenes, coke deposits accumulate on and/or within the catalyst. As the amount of these coke deposits increases, the catalyst begins to lose activity-and, consequently, less of the feedstock is converted to the ethylene and propylene products. At some point, the build up of these coke deposits causes the catalyst to reduce its capability to convert the oxygenates to -ethylene and propylenes, and the catalyst is considered deactivated. Once a catalyst becomes deactivated, it must be removed from them reaction vessel and replaced with activated catalyst. To reduce catalyst costs, activated catalyst is obtained by removing the coke deposits from the deactivated catalyst. This process is typically referred to as regeneration, and typically takes place in a vessel called a regenerator.
Catalyst regeneration is typically accomplished by removing the deactivated catalyst from the reactor vessel, burning off the coke material in the regenerator to re-activate or regenerate the catalyst, and returning the regenerated catalyst to the reactor. Conventionally, the regenerated catalyst is returned to the reactor via an inlet near the bottom quarter of the reactor. By returning the regenerated catalyst near the inlet of the reactor, the regenerated catalyst can immediately contact feed and begin the conversion reaction.
Regeneration processes have been previously described in the literature. For example, U.S. Pat. No. 4,873, 390 to Lewis et al. teaches a process for catalytically converting a feedstock into a product in which the feedstock is contacted with a partially regenerated catalyst. Lewis et al. describe that a partially regenerated catalyst improves the selectivity of the process to ethylene and propylene products.
U.S. Pat. No. 5,157,181 to Stine et al. discloses the use of a moving bed reactor. Catalyst is added to the reactor in a manner that is considered to be effective in enhancing conversion of feed to the desired product without enhancing conversion to by-product. This is accomplished in a preferred embodiment using a radial flow reactor design. Catalyst flows through an annulus in the reactor, with feed contacting the catalyst in a direction transverse to catalyst flow. The patent teaches that production of propane by-product decreases as the catalyst becomes deactivated. In accordance with this finding, it is generally suggested that regenerated catalyst that is recycled to the reactor should be added at an effective rate to provide sufficieny active sites to enhance the production of ethylene and propylene without enhancing the production to propane.
Bos et al.,
Ind Eng. Chem. Res
., 1995, 34, 3808-3806, disclose computer evaluations of commercial-scale reactor types that can be used in methanol-to-olefins processes. It was found that under certain conditions partially regenerated catalyst was more desirable for ethylene selectivity compared to a fully regenerated catalyst. It was uncertain, however, whether partially coked catalyst from a reactor was comparable to a partially decoked catalyst from a regenerator.
In converting oxygenate-containing feedstock to ethylene and propylene product, better selectivity to olefin product, as well as away from undesirable by-product, is still needed. It is particularly desirable to obtain product high in ethylene and/or propylene content, while reducing the amount of any one or more of the C
1
-C
4
paraffin by-products.
SUMMARY OF THE INVENTION
This invention provides various embodiments in an improved making of making olefin product from an oxygenate feedstock. In one embodiment, the method comprises providing a silicoaluminophosphate (SAPO) molecular sieve catalyst; and contacting the catalyst with the oxygenate-containing feedstock in a fluidized bed reactor system with continual regeneration at an average catalyst feedstock exposure (ACFE) index of at least 1.0. As defined herein, the ACFE index is the total weight of oxygenate plus hydrocarbon fed to the reactor divided by the total weight of fresh and regenerated SAPO molecular sieve (i.e., excluding binder, inerts, etc., of the catalyst composition) sent to the reactor, both total weights measured over the same period of time. Fresh catalyst, as used herein, is catalyst that has not been previously used in a reaction process.
In another embodiment, the method comprises contacting the oxygenate-containing feedstock with a silicoaluminophosphate molecular sieve catalyst in a fluidized bed reactor system with continual regeneration under conditions effective to convert the feedstock to an olefin product; separating the olefin product from the catalyst; regenerating a portion of the separated catalyst; and contacting the regenerated catalyst with additional oxygenate-containing feedstock at an ACFE index of at least 1.0.
In yet another embodiment, the method comprises contacting the oxygenate-containing feedstock with a silicoaluminophosphate molecular sieve catalyst in a fluidized bed reactor system with continual regeneration under conditions effective to convert the feedstock to an olefin product; separating the olefin product from the catalyst, and separating the catalyst into a first catalyst portion and a second catalyst portion; regenerating the first catalyst portion under conditions effective to obtain a regenerated catalyst having a coke content of less than 2 wt. %; and combining the regenerated catalyst with the second catalyst portion and additional oxygenate-containing feedstock at an average catalyst feedstock exposure index of at least 1.0.
In another embodiment, the method comprises contacting the oxygenate-containing feedstock with a silicoaluminophosphate molecular sieve catalyst in a fluidized bed reactor system with continual regeneration under conditions effective to convert the feedstock to an olefin product; separating the olefin product from the catalyst, and separating the catalyst into a first catalyst portion and a second catalyst portion; regenerating the first catalyst portion under conditions effective to obtain a regenerated catalyst having a coke content of less than 2 wt. %; contacting the regenerated catalyst with the separated olefin under conditions effective to produce additional olefin product and to obtain a selectivated catalyst; and combining the selectivated catalyst with the second catalyst portion and additional oxygenate-containing feedstock under conditions effective to convert the additional oxygenate-containing feedstock to olefin product.
In still another embodiment, the method comprises providing a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Making an olefin product from an oxygenate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Making an olefin product from an oxygenate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Making an olefin product from an oxygenate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2881460

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.