Magnetic recording medium

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Including a second component containing structurally defined...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S690000, C428S690000, C428S690000

Reexamination Certificate

active

06777072

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority under 35 U.S.C. §119 of German Patent Application No. 101 35 957.8, filed Jul. 24, 2001, the disclosure of which is expressly incorporated by reference herein in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a magnetic recording medium comprising a nonmagnetic substrate and a lower layer which is applied thereon and contains at least one inorganic pigment and at least one binder, and a magnetic layer which is applied on the layer and contains a magnetic pigment, at least one binder and a lubricant and at least one nonmagnetic pigment.
2. Discussion of Background Information
Modern magnetic recording media will meet the steadily growing requirements only when they permit larger storage capacities, shorter access time and higher transmission rates of the stored information. These recording media must have a composition such that magnetic pigments have a sufficiently high density in the recording layer in order to ensure high storage capacities, but the magnetic layer thickness must be very small in order to permit direct overwriting of the data on rerecording without a prior erasing process. For example, magnetic recording media having a high storage capacity today have magnetic layer thicknesses of only less than about 1 &mgr;m.
There are substantially two different methods for producing a magnetic recording medium for a high recording density. According to the first method, a magnetic metal or a magnetic metal alloy is applied to a substrate under greatly reduced pressure in order to thereby produce a magnetic metal film having a very small thickness. Such recording media have good recording properties, in particular a very high recording density, but can be produced only in a small amount since the application of the magnetic layer under reduced pressure constitutes a very complicated process. Moreover, since the magnetic metal pigment is present in unprotected form, such recording media tend to oxidize very easily, which has a very adverse effect on the long-term stability.
There are magnetic recording media in which the magnetic metal pigment is embedded in a binder matrix and is applied to a nonmagnetic substrate in a coating apparatus. In order to achieve a high sensitivity here too, the thickness of the magnetic layer must be kept very small. However, this gives rise to problems owing to the roughness of the magnetic layer, and consequently leads to poor stability of such magnetic layers. In order to overcome this obvious disadvantage, a nonmagnetic layer is initially applied to the nonmagnetic substrate and it is only on the nonmagnetic layer that a very thin magnetic layer is applied. The nonmagnetic layer acts as a buffer layer into which the upper thin magnetic layer can partly penetrate, it being possible for problems due to surface roughness to be substantially avoided. Such magnetic recording media are described, for example, in EP-A-0 520 155, which is incorporated by reference herein in its entirety.
A recording medium of the type stated at the outset is disclosed in U.S. Pat. No. 6,037,037, which is incorporated by reference herein in its entirety. It has, in the lower layer, an acicular pigment having a needle length of from 0.25 to 1 &mgr;m. In the upper magnetic layer, a binder having a low Tg of 30° C. and one having a higher Tg of 70° C. are used. Such a medium has too high a surface roughness for high-density recordings, owing to the coarse-particled pigment in the lower layer, and an insufficient freeze-frame time because of the admixing of a relatively soft binder in the upper layer.
A recording medium which permits a high recording density is also required to have the following properties in addition to good electromagnetic properties:
A. The frictional contact between head and tape surface must be kept to a minimum, something which most manufacturers of magnetic recording media attempt to achieve by adding lubricants to the upper and the lower layer.
B. The magnetic recording medium may cause only slight wear of the heads, which is limited by a specification. This requirement can be met, for example, if the upper layer contains a very soft binder in which hard nonmagnetic pigments are incorporated.
C. Even during prolonged operation, the magnetic recording medium should exhibit no significant abrasion, which can cause the head surface to stick. This requirement also applies in the case of extreme climatic conditions, for example in a very humid or very dry climate or at relatively high temperatures. The last-mentioned requirement is met if the upper layer has a very hard surface, which however entails the risk of embrittlement of the layer.
From the above, it is evident that, in particular, the requirements B and C may contradict one another. In order to comply with both requirements, neither abrasion nor wear of the head can be optimally established, with the result that the quality of the magnetic recording medium is adversely affected.
SUMMARY OF THE INVENTION
The present invention relates to magnetic recording medium of the type stated at the outset, in which the friction between tape surface and head is greatly reduced and which at the same time causes only slight wear of the head. In particular, only very slight or no deposits should occur on the head in a dry climate and at relatively high temperatures. Moreover, such a magnetic recording medium should have a very thin upper magnetic layer in order to have good recording and playback properties. Moreover, the recording medium should be capable of being produced simply and in large quantities.
The present invention provides a magnetic recording medium comprising
a) a substrate,
b) at least one lower layer which is applied thereon, and contains at least one binder and at least one inorganic pigment, and
c) at least one upper magnetic layer which is applied on the lower layer and contains at least one magnetic pigment P2 and at least one binder and at least one further, nonmagnetic pigment P3,
(1) the binder matrix of the upper magnetic layer having a Tg of at least 50° C. and the binder matrix of the lower layer containing at least one binder having a Tg<50° C. and hence determining the viscoelastic properties of the composite comprising magnetic and nonmagnetic layers;
(2) the further nonmagnetic pigment P3 of the upper magnetic layer having a particle size which corresponds at least to the dry thickness of the upper magnetic layer; and
(3) the upper magnetic layer containing at least one compound (A) and at least one compound (B), (A) corresponding to the following formula
R
1
—COO—(R
3
—O)
m
—R
2
  (A)
 where
R
1
is a saturated or mono-or polyunsaturated, straight-chain or branched hydrocarbon radical of 11 to 22 carbon atoms;
R
2
is a saturated or mono-or polyunsaturated, straight-chain or branched hydrocarbon radical of 1 to 6 carbon atoms;
R
3
is a straight-chain or branched alkylene radical of 1 to 4 carbon atoms; and
m is an integer from 1 to 4;
and (B) corresponding to the following formula:
R
1
—COO—R
4
  (B)
 where
R
1
is as defined above and
R
4
is a saturated or mono-or polyunsaturated, straight-chain or branched hyrocarbon radical of 4 to 8 carbon atoms.
In other words, the present invention is directed to a magnetic recording medium comprising:
a) a substrate,
b) at least one lower layer on said substrate, said at least one lower layer containing at least one binder in a binder matrix and at least one inorganic pigment, and
c) at least one upper magnetic layer on said at least one lower layer, said at least one upper layer containing at least one magnetic pigment P2 and at least one binder in a binder matrix and at least one nonmagnetic pigment P3,
(1) the binder matrix of the at least one upper magnetic layer having a Tg of at least 50° C. and the binder matrix of the at least one lower layer containing at least one binder having a Tg<50° C.;
(2) the at least one nonmagnetic pigment P3 of the at least one u

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic recording medium does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic recording medium, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic recording medium will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3323371

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.