Magnetic data storage card

Dynamic magnetic information storage or retrieval – Record medium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06307709

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to systems and method for reading data from and writing data to data storage medium by employing the magnetic recording technology. More particularly, this invention is related to an improved magnetic data access system. The data access system is implemented in a portable data card drive device and in a high speed subsystem for reading data from and writing data to a magnetic data card which has a novel data track configuration for storing data with uniform density. Data can be stored for user applications or related to application system configurations.
2. Description of the Prior Art
Conventional technology of reading-writing data on concentric circular data tracks often presents a problem that the data-bit density varies between the outer tracks and the inner tracks. The variable bit density in data storage is due to a geometrical factor that the outer data tracks are much longer in length than the inner tracks. A common practice is to form the inner tracks with a capacity to store the data bit at a higher bit density. A more complicate servo control system implemented with more complex signal-processing algorithms is required due to the variations of data storage density between different data tracks. Additionally, by varying the data storage density from the inner tracks toward the outside tracks, the data transfer rate is also changed in accessing data from the inner tracks then outside tracks. Such variation may also cause difficulties and complications in processing the data. Higher error rates may incur due to these variations between the inner tracks and the outer tracks.
Therefore, a need still exists for an improved data-card drive system to overcome the aforementioned difficulties encountered in the prior art. Specifically, this storage card drive system must provide a uniform density for data storage and a data-card drive system to access the data-storage card. Furthermore, it would be desirable that this system is portable and is also provided with several standardized sizes for processing standardized data-storage cards.
SUMMARY OF THE PRESENT INVENTION
Therefore, an object of the present invention is to provide a data storage-card drive system with a pickup head moving above the data-storage card in rotational movement. The data read-write function are enabled only for arc-segments of the rotational movement such that the data tracks are arranged as plurality of parallel arcs, e.g., half-circles, to overcome the aforementioned difficulties and limitations encountered in the prior art.
Specifically, it is an object of the present invention to provide a data-storage card drive system with a pickup head driven by a motor, e.g., a brushless motor, to rotate over the data-storage card with the rotation axis perpendicular to the card surface. The motor is mounted on a carriage for making horizontal movement along a longitudinal direction of the data card. The position of the pickup head is then servo-controlled by moving the carriage and the motor while the data storage card either stays at a fixed position or only pickup head is rotating and the card is making horizontal linear movements.
Another object of the present invention is to provide a data-storage card drive system for performing the data access tasks over a data storage medium surface, which has uniform data storage density. A new configuration of data-tracks formed as parallel arc or arc-segments, e.g., semi-circular data track, is implemented such that all data tracks have substantially the same length for data storage and the data bits are stored with uniform density.
Another object of the present invention is to provide a data-storage card drive device implemented with a subsystem provided with local memory storage for conveniently interface with personal computers or peripheral devices to achieve higher speed operations.
Briefly, in a preferred embodiment, the present invention includes a magnetic data-card. The magnetic data-storage card includes a magnetic data-storage medium layer adhering to the card. The data-storage medium layer includes a plurality of data storage tracks for storing data therein. Each of the tracks comprising at least an arc-segment wherein each of the data storage tracks being substantially parallel to a neighboring track. The data storage tracks of the data card may contain user application and system configuration data. The recorded data can be updated in the field. Application system can either encrypt or decrypt the recorded data. Application system can also change the configuration such as set and reset the write protection, the password and other features related to the data-access operations.
These and other objects and advantages of the present invention will no doubt become obvious to those of ordinary skill in the art after having read the following detailed description of the preferred embodiment which is illustrated in the various drawing figures.


REFERENCES:
patent: 4617216 (1986-10-01), Haghiri-Tehrani et al.
patent: 4868373 (1989-09-01), Opheij et al.
patent: 6-68452 (1994-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic data storage card does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic data storage card, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic data storage card will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2586605

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.