Low temperature, high quality silicon dioxide thin films...

Coating processes – Direct application of electrical – magnetic – wave – or... – Plasma

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S162000, C427S167000, C427S255370

Reexamination Certificate

active

06531193

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a method and apparatus for the deposition of oxide films and, more particularly, to an improved low temperature, chemical vapor deposition method for the deposition of silicon dioxide films.
BACKGROUND OF THE INVENTION
Low temperature chemical vapor deposited silicon dioxide has found extensive use in microelectronic applications as gate dielectrics in the metal-oxide-semiconductor field-effect transistor (MOSFET) devices, passivation layers, interlayer insulators, and as protection masks to pattern and expose some regions for processing while shielding other areas. In addition, amorphous silicon oxides are routinely used in large area electronics and opto-electronics such as in displays, optical interconnects, and solar photovoltaic cells. In many of these devices, there is a need to reduce the oxide film deposition temperatures while retaining overall uniformity, homogeneity and dielectric quality. For example, in displays and solar cells, commonly employed low temperature glass substrates limit the maximum oxide processing temperature to about 600° C. For dielectrics used between metals in integrated circuit (IC) manufacturing, the deposition temperature must be below 450° C. to prevent the aluminum in the conductor lines from reacting with the silicon. In addition, high quality oxides deposited at a temperature below 200° C. would be highly useful to the optical coatings industry and could also help bring about the use of plastic substrates for microelectronic devices. Therefore, great effort has been devoted to the reduction of the deposition temperature necessary for high quality silicon dioxide film growth.
The deposition of high quality silicon dioxide films at temperatures below 400° C. has, to date, been dominated by oxidizing plasma-enhanced chemical vapor deposition (PECVD) reactions which use tetraethyloxysilane (TEOS) or silane (SiH
4
) as the silicon precursor source. These low temperature oxides have not only been used for thin film transistor (TFT) device fabrication (see D. Buchanan et al., IEEE Electron Device Letters, V. 9, p. 576 (1988)), but are also commonly employed as intermetal-dielectrics and passivation layers in the microelectronics industry (see B. Chin et al., Solid State Technology, p. 119 (April 1988)).
U.S. Pat. No. 5,593,741 to Ikeda discloses the use of a chemical vapor deposition (CVD) method for the deposition of silicon oxide films through the use of TEOS and oxygen in a plasma reaction chamber (with helium as a carrier). Ikeda's process involves alternate depositions of thin oxide layers, first without a plasma and then with a plasma which provides an ion bombardment to improve the film's properties and the film's conformance to an underlying substrate. Even though the Ikeda specification quotes a range of deposition temperatures of from 200° C. to 400° C., it provides no examples to support substrate temperatures less than 300° C. In addition, in U.S. Pat. No. 5,462,899, Ikeda describes a CVD method for forming a SiO
2
layer using TEOS and ozone as the principal reactants. The substrate temperature (for an example using triethoxyfluorosilane) is cited as 400° C. in the specification.
Even though plasma-enhanced CVD TEOS (PETEOS) and silane-based oxides can be deposited with high quality at acceptable deposition rates, these materials do have drawbacks for these envisioned applications. For example, device quality PETEOS SiO
2
films are difficult to achieve at temperatures below 250° C. (see T. Itani et al., Mat. Res. Soc. Symp., 446, p. 255, (1997)). Also, TEOS has a low vapor pressure of about 2 Torr (at 25° C. and 1 atm.) which necessitates the heating of all delivery lines and chamber surfaces to avoid TEOS condensation. Such a low vapor pressure also prevents gas metering with conventional mass flow controllers (MFCs) (see S. Nguyen et al., J. Electrochem. Soc., 137, p. 2209, (July 1990)). Silane gas, conversely, is easily metered by conventional MFCs, but great care must be used because silane is a toxic and pyrophoric gas which constitutes an explosion hazard at high SiH
4
concentrations. Because of these issues, there continues to be interest in various non-pyrophoric organosilicon gases with high vapor pressure as new silicon source materials for PECVD oxide applications.
In the examples given by Ikeda in U.S Pat. No. 5,593,741, besides TEOS, octamethylcyclotetrasiloxane and tris(diethylamino)silane are also used as the silicon sources. Meanwhile, Ikeda indicates that tetramethylsilane (TMS) can be used in the process in lieu of TEOS as well. However, the lowest substrate temperature cited in the specification is 300° C. In U.S. Pat. No. 5,462,899, TMS is indicated as being an alternative silicon source, where the substrate temperature was reported to be 400° C. In addition, U.S. Pat. No. 5,083,033 to Komano et al. describes the use of TMS as a reactant to produce a silicon oxide layer, using a focused ion beam to create an environment for the surface reaction. On the other hand, Guinn et al. in “Chemical Vapor Deposition of SiO
2
from Ozone—Organosilane Mixtures Near Atmospheric Pressure”, Materials Research Symposium Proceedings, Vol 282 (1993), indicate that TEOS is 5-10 times more reactive with ozone than is TMS, in a CVD reaction chamber, within a temperature range of 258° C. to 328° C. As can be seen from the above prior art, the lowest reaction temperature in a plasma chamber used for the deposition of SiO
2
(where TMS is a precursor and the results are supported by experimental evidence) is about 258° C.
Accordingly, it is an objective of this invention to provide an improved method for the deposition of TMS SiO
2
wherein the deposition temperature is less than 250° C. Furthermore, the mechanical properties as well as the conformality of TMS oxides have not been explored in detail; thus, investigation and exploitation of these properties of TMS oxide films is another objective of this invention. Moreover, low temperature oxide films typically exhibit relatively poor properties compared with high temperature films. Post-deposition annealing often improves the quality of deposited films. However, most published studies used an annealing temperature higher than the deposition temperature, which comprised the advantage of low temperature process. In order to preserve the low temperature aspect while seeking these improvement techniques, the present inventors have demonstrated the effectiveness of post-deposition annealing treatment at or below the deposition temperature.
In addition to gate dielectrics in TFTs, oxide films can be used in other applications, such as the inter-level dielectric. Another objective of this invention is to extend the applications of PECVD TMS (PETMS) oxides to micro- and nanofabrication beyond the gate dielectric application.
SUMMARY OF THE INVENTION
The present invention is directed to a method for forming a silicon oxide film on a substrate comprising the steps of: (a) heating the substrate to a deposition temperature of between about 25° C. to 250° C.; (b) providing tetramethylsilane (TMS) in a gas flow amount up to about 1,000 sccm in a plasma discharge; (c) developing pressure between about 0.001 Torr and 100 Torr; and (d) depositing SiO
2
on the substrate. In one embodiment of the invention, the substrate comprises at least one of: a semiconductor, a dielectric, a conductor, a glass, a polymer, a plastic, a metal foil or combinations thereof. In another embodiment of the invention, the deposition temperature is from about 100° C. to 200° C. and the pressure of step (c) is between about 2 Torr to about 8 Torr. In a further embodiment of the invention, the TMS is provided in a gas flow amount up to about 100 sccm in a plasma discharge. In a preferred embodiment, the TMS in step (b) is the primary silicon containing precursor source and the plasma discharge of step (b) comprises oxygen atoms, radicals and ions. In an embodiment of the invention, the TMS to oxygen flow rate is present in a ratio of between about 1:10 to abou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low temperature, high quality silicon dioxide thin films... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low temperature, high quality silicon dioxide thin films..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low temperature, high quality silicon dioxide thin films... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3029277

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.