Electronic digital logic circuitry – Clocking or synchronizing of logic stages or gates – Field-effect transistor
Reexamination Certificate
1999-09-03
2001-03-20
Tokar, Michael (Department: 2819)
Electronic digital logic circuitry
Clocking or synchronizing of logic stages or gates
Field-effect transistor
C326S081000, C326S115000
Reexamination Certificate
active
06204697
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to receiver circuits, and in particular to clocked receivers for amplifying low-swing signals to full-rail CMOS.
Faster VLSI devices put an ever increasing demand on bandwidth requirements for point-to-point and distributed busses. Frequently these busses experience large overshoots and undershoots if an attempt is made to drive them to the full range of the power supply. One effective technique used to make these interfaces run faster without such noise problems is to reduce the voltage swings below the full supply rails. This creates a new requirement for fast, low-swing data receivers and output drivers.
The requirement that a data receiver must be fast implies that it must have high bandwidth internally. Since signals inside CMOS VLSI devices are typically distributed as full-swing signals for noise-immunity and ease of use, the receiver should also have gain to amplify from low-swing to full-swing.
However, VLSI amplifiers in general experience a limited gain-bandwidth product. Thus, if it is desired to amplify low swings to full-rail CMOS (gain), some speed (bandwidth) is usually lost. In order to overcome speed and bandwidth limitations, two or more gain stages are often put in series. This unfortunately results in higher latency to valid output data. Achieving low latency is very important because it effects the actual time required to get the first data off of a bus and into the device. Another desirable quality for a low-swing receiver is a large input common-mode voltage range. Frequently, the actual input voltage levels are determined by many other factors in the environment, such as output driver characteristics, line impedance, available power supplies, etc. An input receiver with a large common mode range can avoid further constraining the voltage range. In summary, basic desirable qualities for a low-swing receiver include 1) good gain, 2) low latency, and 3) large common mode range. As with many VLSI circuits, additional favorable qualities include small physical area and low power consumption.
Receivers in the prior art, such as that of U.S. Pat. No. 5,319,755, entitled “High Speed Bus System”, by Horowitz & Lee, as illustrated in
FIG. 1
have several undesirable characteristics which are avoided in this invention.
First, in Horowitz/Lee, the input differential data BusData and Vref are sampled by a full-CMOS passgate, which means that the P+ diffusion of the PFETs of T1 and T2 are connected directly to device pins. This can lead to a latch-up condition if the power-up sequence is not tightly controlled, i.e., the pin is powered up before the well.
Second, the circuit is dependent on the distribution of a bias voltage, labelled VBIAS. U.S. Pat. No. 5,023,488 of Gunning has a similar bias requirement. In general, input receivers are usually distributed across the full width of a VLSI device. Voltage bias lines running large distances across a mixed-signal CMOS device are frequently disturbed by coupling capacitances to adjacent high-speed wires or by the substrate itself. It can in practice be very difficult to distribute quiet voltage-bias wires in a noisy environment.
Third, the circuit makes use of the signals CLK and nCLK, with each going into complementary devices. If the skew between the rising edge of CLK and the falling edge of nCLK is not very well controlled, it can lead to a condition where the data feeds through from the master to the slave latch a phase earlier than desired. Lastly, the latency of this design is quite high, requiring at least one full clock cycle plus the clock-to-Q delay of the final sense-amplifier.
SUMMARY OF THE INVENTION
The present invention achieves the stated input receiver goals by merging many of the different functions required into a single unit instead of serializing them in the more traditional fashion. The present invention provides a receiver circuit having both a source-follower pair of MOS transistors, and a source-coupled pair of MOS transistors. The connecting nodes between these two pairs are coupled to a sense amplifier. The simultaneous use of the source-follower pair, the source-coupled pair and the sense-amplifier transistors allows for fast amplification of the low-swing input to full-rail CMOS.
In a preferred embodiment, the nodes are connected to outputs through inverters. A power down transistor is coupled to the drains of the source-follower pair. Power saving transistors are connected to the drains of the source-coupled pair, with their gates coupled to the opposite connecting node. Pre-discharge transistors are connected to the common nodes between the source-follower and source-coupled transistors. All of the clock inputs to the circuit use the same phase of the clock, avoiding any possibility of skew-induced race conditions.
In a preferred embodiment, the present invention provides a data input receiver for boosting a low-swing data input signal to a full swing CMOS data output signal with low delay between the input and output. The data receiver receives a low-swing differential signal from a high speed bus, and combines boosting of the low-swing data to full-swing CMOS with latching for retention and use by subsequent circuits in order to achieve both functions in minimal time. The data receiver operates in less than one cycle of a single input clock, has a large common mode range, requires no bias inputs and has very small setup and hold requirements. Furthermore, the receiver may be powered down and returned to an active condition in less than one cycle of the input clock.
For a further understanding of the nature and advantages of the invention, reference should be made to the following description taken in conjunction with the accompanying drawings.
REFERENCES:
patent: 4247791 (1981-01-01), Rovell
patent: 4973864 (1990-11-01), Nagami
patent: 5023488 (1991-06-01), Gunning
patent: 5355391 (1994-10-01), Horowitz et al.
patent: 5513327 (1996-04-01), Farmwald et al.
patent: 5606717 (1997-02-01), Farmwald et al.
patent: 5621340 (1997-04-01), Lee et al.
patent: 5659258 (1997-08-01), Tanabe et al.
patent: 5729178 (1998-03-01), Park et al.
patent: 5977798 (1999-11-01), Zerbe
Le Don Phu
Pennie & Edmonds LLP
Rambus Inc.
Tokar Michael
LandOfFree
Low-latency small-swing clocked receiver does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Low-latency small-swing clocked receiver, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low-latency small-swing clocked receiver will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2475709