Low fat spread

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Fat or oil is basic ingredient other than butter in emulsion...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S658000, C426S804000

Reexamination Certificate

active

06322844

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to low or no-fat spread products, in particular to water-continuous spreads comprising 10 to 50 wt %, calculated on the total composition, of an oligofructose. Such spreads are useful because it is a low-calorie foodstuff rich in fibre material which has an excellent feeling in the mouth etc.
Many attempts have been made to formulate low fat spread products. Amongst the various reasons why such products are desired is the wish to reduce the caloric content of the spread and other dietetic considerations.
Over the last decade many non-triglyceride substances have been described as potential fat-replacers in food products. Examples thereof are waxes, e.g. jojoba oil and hydrogenated jojoba oil, polysiloxanes, acylated glycerides, polyalkoxyglycerolethers, dicarboxylic acid esters, polyol fatty acid polyesters and the epoxy extended derivatives thereof. Examples of disclosures of fat-replacers are e.g. U.S. Pat. Nos. 3,600,186, 4,005,195 and 4,005,196.
A substance that has widely been applied as a fat extender is water. This use of water has, for example, led to the introduction of so-called halvarines. If relatively high levels of water are used, often thickening agents and/or gelling agents are used for avoiding adverse effects of the high water level.
In particular effort has been directed towards the development of fat-replacement compositions which possess a smooth and oily taste, texture, mouthfeel and lubricity without resulting in an off-taste or malodour.
For example EP 298 561 (Unilever N.V.) describes the preparation of edible plastic dispersions not having a continuous fat phase, said composition including at least two gelling agents forming two gel-forming % compositions.
EP 509 707 discloses low fat spreads containing a combination of water soluble starch, alginate and an ion source. Spreads according to this document may optionally contain 1 to 15% of a soluble vegetable fibre. An example of a suitable fibre for this purpose is INULIN which is for example marketed under the trade name FIBRULINE.
JP 267450/90 (Ajinimoto Co. Ltd.) discloses the use of polyfructan as a fat or oil substitute in food products. Preferred polyfructans are low caloric polysaccharides of the inulin type, which are mainly composed of beta-2,1-bonds). Japanese patent applications 03/280856 and 03/280857 to Ajinomoto Co disclose spreads prepared by solubilizing certain fructan types in hot water or an aqueous solution of food ingredients, followed by cooling under stirring and allowing to stand as to yield a pasty, sometimes butterlike composition.
SUMMARY OF THE INVENTION
A problem with water-continuous spreads containing low fat levels and high fibre levels is that they often do not possess the desired plasticity and/or they are too hard and/or they are too thixotropic. Also they sometimes have a tendency to loose water, sometimes the structure is not quite smooth and may show some graininess and also they may have a tendency to loose structure upon shear.
Polysaccharides of the Inulin type are for example marketed under the trade name Raftiline™ and Fibruline™. Raftiline has been recommended for use in table spreads, for example in fat-continuous spreads containing 20-25 wt % of fat and wt % of Raftiline.
Surprisingly it has been found that water-continuous spreads of low fat content, high fibre content and good rheological properties can be obtained if the aqueous phase of the composition contains relatively high levels of oligofructoses in combination with specific levels of other ingredients.
Accordingly the present invention provides a water-continuous spread comprising: 10 to 50 wt % of an oligofructose and 0.05 to 30 wt % of a biopolymer other than oligofructose (with an average chain length of 10 to 200 units) and less than 20 wt % of an oil phase.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The Oligofructose Material
For the purpose of the invention, 10 to 50 wt % of oligofructoses are used. The oligofructose employed may not only contain fructose units, but also minor amounts of other monosaccharide units, such as those derived from glucose. Most preferred are materials containing one (terminal) sucrose unit, the remaining groups mainly being fructose units. Also the oligofructose is preferably of the beta-2,1 type, more specifically it is inulin which may be obtained from plants such as e.g. Compositae species and fructans obtained from various micro-organism as e.g.
Aspergillus sydowii.
Especially preferably inulin materials derived from Jerusalem artichoke of chicory are used. Preferably commercially available inulin materials like Raftiline or Fibruline are used. Other suitable oligofructoses are e.g. irisin and lycorisin.
The (weight) average degree of polymerisation of the oligofructose material is preferably from 5 to 200, more preferred 7 to 70, most preferred 10 to 30. Also preferably the oligofructose contains less than 5% w.w. of mono- and disaccharides. Some hydrolysis of the longer chains of the natural oligofructose may therefore be desirable to adjust the number of monosaccharide units in the molecule. Although a minor amount of chain branching in the oligofructose does not seem to affect performance, it is preferred that the oligofructose employed is substantially linear.
Compositions of the invention preferably contain a structuring amount of oligofructoses. For the purpose of the invention, structuring amounts of oligofructoses are levels at which the oligofructose material is no longer soluble in the system, but is present as discrete particles which provide structure to the product. The structuring amount of oligofructoses can suitably be determined by any suitable mathos e.g. by measuring the melting point or by mixing all ingredients other than oligofructoses and then gradually adding oligofructoses while measuring the viscosity. At a certain level of oligofructoses an increase of the viscosity will be observed, indicating that a structure is formed by the oligofructoses. For the purpose of the invention any level of oligofructoses above the level where a structure begins to form are referred to as structuring amounts.
The structuring amount of oligofructoses may depend on the type of oligofructoses used and the remaining ingredients of the product. For inulin type oligofructoses, in particular those derived from Jerusalem artichoke or chicory, the structuring amount is generally more than 15 wt %, for example more than 15 wt % and less than 40 wt %, more preferred 17 to 37 wt %, most preferred 20 to 35 wt %. For other oligofructoses similar structuring amounts apply.
Preferably the particle size of the oligofructose agglomerates in the spread is in the order of magnitude of 0.5-20, preferably 1-5 micrometer which can be effected by suitable processing. The size of the primary oligofructose particles preferably is in the order of magnitude of 50 to 500 nm.
The Biopolymer Materials
Compositions of the invention contain from 0.05 to 30 wt % of biopolymers other than oligofructoses. Preferably the level is from 0.1 to 20 wt %. The biopolymers may be added as such or may for example be included in the form of commercially available fat-replacers.
Suitable biopolymer materials may for example be selected from carbohydrates (especially starches and gums) and proteins. Preferably gelling biopolymers are used.
The preferred levels of biopolymers for obtaining optimum product properties (e.g. plasticity and/or non-thixotropy), generally depend on the type of biopolymer used. Also the preferred amount of biopolymers is dependant on the desired degree of thickenina or gelling and the presence of other ingredients in the composition.
If gums are used, their preferred level is 0.05 to 5 wt %, more preferred 0.1 to 1.5 wt %, most preferred 0.2 to 1 wt %. Suitable gums may for example be selected from the group of agar, algin, arabic, carrageenan, furcelleran, gellan, ghatti, guar, karaya, larch, locust bean, pectin, tragacanth and xanthan gum. Especially preferred is the use of agar, carrageenan, furcelleran, guar, l

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low fat spread does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low fat spread, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low fat spread will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2569059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.